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Introduction

* These workshops are really interesting (I think) and I
highly recommend them.

* Link to everything:
— https://indico.cern.ch/event/735431 /timetable/

* [ of course can’t touch on everything from the whole
workshop in just an hour!

* [will focus on a few things, biased towards what I found
most interesting.
— Feldman-Cousins and Confidence Intervals, Generally
— Testing the Mass Hierarchy
— The Challenge of Unfolding
— Uncertain Uncertainties


https://indico.cern.ch/event/735431/timetable/

Feldman-Cousins and
Confidence Intervals, Generally



Building Confidence Intervals

* A briefintroduction “frequentist”
confidence intervals.

— Not actually from the workshop, but I
think it's important background to
have.

Definition of an Confidence Interval
at level a:

If we repeat the experiment numerous times,
a of the intervals will cover the true value.

* This isn't really what you wanted to

know, but it has been rigorously
defined.

* There are many ways to construct
CI's depending on the circumstance.

The Truth
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* Ifyou problem has all Gaussian errors, then the distribution of
the estimator of the parameter is also Gaussian.
— Presented without proof, since that’s what the PDG does, too.

— This is the case for our example, too.
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« We will use the likelihood distribution to draw the CI.

« We allow inside our CI any values of 8 with small values Ay? relative
to the best fit, and we exclude values of 6 with larger values of Ay.
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* The question you should be asking:

 How do I know what “up value” or “critical value” to
choose to know which @’s are in and which are out?



Wilks’ Theorem

* The Ay? between your best
fit and other points will
follow a standard y?

IF conditions are met:
— Large statistics

— Well away from parameter
boundaries

— Nested hypotheses.

* Testing one value against a
continuous set of
alternatives

* Frequently, these are not

met. So now what?
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(1—-a) (%) m=1 m=2 m=3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16




https://indico.cern.ch/event/735431 /contributions/3268205 /attachments/

Wit h O u t Wi | kS’ 1785184/2906147 /cousins_phystat-nu_cern_jan2019.pdf

Nested Hypothesis Testing: Duality with Intervals

In classical/frequentist formalism (but not Bayesian formalism), the
theory of these hypo tests maps to that of confidence intervals:

Having observed data x_,.,, suppose the 90% C.L. confidence
interval for pis [uq,p,].

This contains all values of u for which observed x_, is ranked in
the least extreme 90% of possible outcomes x according to p(x|un)
and the ordering principle in use.

Now suppose we wish to test H, vs H, at Type | error prob a = 10%.
We reject H, if x,, is ranked in the most extreme 10% of x
according to p(x|u) and the ordering principle in use.

Comparing the two procedures, we see:

Reject H, at a=10% iff p, is not in 90% C.L. conf. interval [p,,u,].

Use of the duality is referred to as “inverting a test” to obtain
confidence intervals, and vice versa. (Section 7.4)

Bob Cousins, PhyStat-nu, 1/2019 17




Inverting the Test

e Ateach pointin parameter space, we conduct a hypothesis

test.
— The parameter we test becomes H, and everything else is H;.

* We ask: how likely is the observed data assuming H,?
— With Wilk’s theorem, we could just compare the Ay? from our data

to the y? distribution.

— Instead we generate pseudo-experiments to answer this question.
NOVA Preliminary NOVA Preliminary
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* If we would reject HO at level (1-a) in the hypothesis test, we

also exclude this parameter from the a CI.
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NOVA Preliminary

2.8~

T T T T T T | T ! ! |
---- No Feldman-Cousins
—— Feldman-Cousins

NOVA Prel

iminary
T T T

yo
4

3_(/3 Degsn
w N

Probabilit
o o
Y N

(@]

] T ' 7
raise significance . g o3ft  reproduce standard yx?
1 &
Standard x> 1 2 oz
F(x|8) 3
©
o 0.1
4 8
o
4 6 % 4

Probability Density

NOVA Preliminary

b
w

o
[N

©
L

\
lower significance B

11



Feldman-Cousins (or the “Unified Approach”)

PHYSICAL REVIEW D VOLUME 57, NUMBER 7
Unified approach to the classical statistical analysis of small signals

Gary . Feldman®
Department of Physics, Harvard University, Cambridge, Massachusetis 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095
(Received 21 November 1997; published 6 March 1998)

We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
{apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the cheice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated
confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
[$0556-2821(98)00109-X]

PACS number(s): 06.20.Dk, 14.60.Pg

1 APRIL 1998
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Duality in Nested Hypothesis Testing

CHAPTER 22

While F_C was “in prOOf”, Gary LIKELIHOOD RATIO TESTS AND TEST EFFICIENCY
realized that “our” intervals were T o i el

- - s a which, under certain conditions, have des y..hl:pmr\r Cs Anwmd H st comst rixction ¢ lm l’-
simply those obtained by “inverting” ;','If!:";i.";:I.:;:L";.!i.“;.‘;'.'.'.l“.,.'?if.‘;'fl'n'iin"‘..“..i‘:i'.L";,‘.‘..“.hi';Z["m,.‘i ':*L:h
As before, we have the L1
the classic “exact” LR hypothesis test oo = [

where @ = (8,.8,) color of r 4+ 5 = k paramcierns (¢ = |y = pand x may also be a vecion

(which specifies LR ordering) in N o
Kendall and Stuart. which s corposie salans £ = 8, agalen

H 8, 8,4

Ho: 0, =0, (22.1)

We know that there is generally no UMP testin this situation. bt that there may be a UMPU tes

It was all on 14 pages, plus profiling

vimg the uncon
i of the L§

nuisance parameters!

and also to finel the ML estimators of 8,, when Mg holds.' giving the conditional maximum of
the LF )
Lix|#,q.0,)

See Gary’s Fermilab talk, “Journeys Of . i i i s s i

with 8, in (22.2). Now consider the likelihood ratio®

an Accidental Statistician”, el
http://lusers.physics.harvard.edu/~feldman/Journeys.pdf

Since (22.4) a5 the rane of a condional maximum of the LF 1o its usconditional maximum, we

learly
) 0=l<1 (I2.5)
This was of course good'! oo i e B g b Tl My
. . N " I‘n.'l o l: s bar) lIp\l sihle e 1I;|;:r | I.' SIEn \N‘IH reasonabl eptable
regio Al : 15 therefore
It led to rapid inclusion in PDG RPP. |
I X0y (Z2.0
where ¢ 18 determaned from the dissribution /) of [ 1o give a sizea test, that is
[*sra=e
Ji
Neither m vialue of the LF is affected by a cha ; neter from @ to £ (@) lh ML
a1l I IBIF\ ngr () - cf 18\ 1‘1 s the IR sladi | t umlcr repar rization

Bob Cousins, PhyStat-nu, 1/2019 18 | 13




Feldman-Cousins

Long email to me from Gary on June 5, 1998, detailing
widespread interest in F-C, noting:

11

Most people seem to have heard about our paper, or, if not, are
starting to ask about it.

The most disconcerting thing is that | keep getting introduced as
‘Feldman, of Feldman and Cousins.’

1
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Feldman-Cousins in Neutrinos

20 years of experience with F-C

Lots of experience in HEP, many find it useful, especially when:

Y% A model parameter is bounded (mass, cross section,
sin/cosine of an angle, etc.); and/or

5 When log-likelihood is non-Gaussian (so Wilks’s Theorem is
inaccurate); multiply connected confidence regions; and/or

5% The interesting parameter space is >1D, where LR ordering a
la F-C and K&S is particularly useful, and other orderings are
poorly defined (metric dependent)

Neutrino community gets three gold stars, so major user!

(And in fact F-C were working on the NOMAD neutrino
experiment at CERN in 1998.)

BTW, for data with a “5-sigma discovery”, the F-C “unified
approach” reproduces same answer as usual one-tailed test.

Bob Cousins, PhyStat-nu, 1/2019
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https://indico.cern.ch/event/735431/contributions/3137791/att
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Feldman-Cousins Pseudo-experiments: NOVA  nova preliminary

2.8 a
 Fit the data and extract parameters with all b \ ]
. A - |
possible values of 0. = 28 N
X [ ]
*  When generating experiments, always use the = o al 1
best fit to the nuisance parameters from the o T 1
fit to data for each 0. a _.r 1
o 2.2 FeldmanfCousin ]
— Minimizes over-coverage of all methods we ‘mic 26 Ofc + Bedt Fit NH 1
examined while still never under-covering. R Y 02'5 B Y B
. sin“g
« Tested coverage with a method from Berger | |
and Boos for handling p-values with unknown Pseudo-Experiments
nuisance parameters. “Profile:” Use best fit value
- R. L. Berger and D. D. BOOS, J Al’neI‘. StatiSt. Of nuisance parameters

Assoc., 89, 1012 (1994)

— Tested coverage at a variety of choices of

oscillation nuisance parameters within 30
Reducing quoted significance by a very small amount

NOvA FD

8.85x|02° POT eqfiv v + 6.9k10%° POT
l,,,

---No Feldman-Cousins

n
[4)

— In all cases, the other choices of nuisance
parameters produced stronger rejection than the
quoted rejection at the nominal profiled values.

N

Areuiwald YAON

— This is as expected if everything is working
correctly since the profiled point should give the
widest CIs or lowest significance.

—

— Feldman-Cousins
— Normal hierarchy

o
3

sl b by by L 1 =1

Significance (o)

— Inverted hierarchy

- P R L
Alex Himmel 0.4 0.52 0.6 0.7
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FC @ Long Baselines

Feldman-Cousins Pseudo-experiments: T2K

 For 0,5 and systematics:

— Draw from prior distributions

(PDG or output of ND fit)

| Parameter Correlation Matrix After ND280 Constraint
1

25

« For sin20,, and Am?:

— Generate an Asimov dataset at best fit values, and

construct a likelihood for this simulated dataset.

— Convert the likelihood to a PDF, and draw values
for the experiments from that distribution.

20

Fit Parameters

Pseudo-Experiments

Sample from these
prior/posterior
distributions

1am?

0 5 10 15 20 25
Fit Parameters

2K Run1-R Preliminary
S e

= 10p

-2AIn(L)_

—_ D W B N9 e O
LAN R RN R R R RN RN RN R RR R RRRRARR N RRRRR R

Alex Himmel

| (eVic4)

8

=3
8
»
3

0.0027

03 0.35 0.4 0.45 0.5 0.55 06 0.65 0.7

23

17



FC (and alternatives) for Sterile Neutrinos

* Daya Bay used 2 different approaches in their  + Litchfield/Waldron developing an analysis
sterile search: Feldman-Cousins and CLs* based on accounting for the “Look

— *We’ll come back to CLs in a feW Slides_ ElseWhere EffeCt" ln Sterlle SearCheS-

— Calculate “local significance” and then
correct back to global significance.

('\J'_‘ T T T TTTT II T T T TTTTT . . . .
2 L . — Many challenges applying this to oscillations
- 107k h like harmonic local minima (below).
S E .
hs r . 100
: ] = Background
i - ] ool 4% max === Am?=09eV?,sin?20 = 0.38
- — = T +Os 'é* Toy Experiment
] Qe
) 2 1 A 3 3 max
_ o 60 A > h (W
- - g 0 gl minimum
i T e - 2nd max
L i z ' g
- - 204 "¢ ‘Q'g\
10° - — - Daya Bay 95% C.L. = 0 . :
C n 1 2 3 4 5 6 7 8
F— Daya Bay 95% CL_ . E(MeV)
- =—— Daya Bay 95% expected (+15) . Il
" ----Bugey 90% C.L. E°
-4 | Lol | Ll L1011l =
100 5 2 1 0- ‘ :
1 0 1 0 1 0 -2 1 T T T T T T ¥ T
sin 2914 0 1 2 3 4 5 6 7

Am?(eV?)

Daya Bay PRL 113, 141802, 2014

https://indico.cern.ch/event/735431/contributions/3268131/att

https://indico.cern.ch/event/735431/contributions/3137791/att  achments/1784220,/2904149/PhystatNu_LEEandNeutrinos_pl20
achments/1783219/2902091/2019-01-23-1bl-stats.pdf 190124.pdf



signal expectation [cts]

FC (and alternatives) for OvpBp

* Small, discrete numbers make the statistical problem difficult.

https://indico.cern.ch/event/735431/contributions/
3137822 /attachments/1784175/2904069 /agostini-
Ovbb-phystat.pdf

— Avariety of statistical techniques giving different answers.

* Also creates some paradoxes:

— In the FC analysis, sensitivity gets better with larger background.

— Why? To avoid under-coverage.
— Bayesian? Low-stats — strong priors

8-

7

6

5

4f-

3

. — signal discovery (FC toyMC)

---------- limit setting (FC toyMC)

if- —— signal discovery (analytical)
. limit setting (analytical)

0_ | I N | | I 1 1 | I I I | | I | | I I |
0 1 2 3 ¥ ¥

background expectation [cts]
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FC (and alternatives) for OvB

* Avariety of techniques used, often multiple in the same experiment.
— M]JD is the winner with 5 (!) different statistical analyses

— Generally experiments using Wilks’ theorem have still used toy MC to
test their coverage.

Experiment Frequentist Bayesian
Counting FC :

I\D/IA]ORANA Unbinned £ FC Fl?ft Prlo}f |

emonstrator Unbinned £ CLs Jettreys Prior

KamLAND-ZEN Multivariate £ Wilks'’

EX0-200 Multivariate L Wilks’

CUORE Bounded profile £ Wilks’ Flat Prior
Extended unbinned L | _

GERDA Profile £ FC Flat Prior

20



Speeding up FC with Bayesian Methods

* One big challenge with FC is that you need to throw and fit a

very large number of fake experiments.
— NOVA used 33 million CPU hours on a supercomputer!

* The idea: use a Bayesian technique (Gaussian Process), to
optimally choose which fake experiments to throw.

* (Can speed things up by an order of magnitude.

Sampled Points

0000000
.O(N.:().
00000000
0000
0.6 1 @0 000
@ Q0O
o0 @)
- ®) [ X©)
o1 O [ NONO
> 0.5 - 0000
‘B
0.4 1
0.3 -
T T T
0 0.57 by 1.57
dcr

https://indico.cern.ch/event/735431/contributions/326820
4 /attachments/1784942 /2905664 /nitish_gpfc.pdf

Confidence Contours

0.7
-== 90% FC
__” o
-=-- 68% FC Vg )
0.6 1 90% GP AN )
7’/
68% GP N >
0.5
0.4
0.:3 T T T
0 0.5 ™ 1.5m 2T
dcp
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Testing the Mass Hierarchy

22



Testing the Mass Hierarchy

* This can sometimes feel like a moving target.
— Slides from the same statistician in 2016 and 20109.

Normal Hierarchy versus Inverted Hierarchy

Non-nested parameterized models

H, : normal hierarchy i.e., Am3, <0
H; : inverted hierarchy  i.e., Ams, >0

Computing a p-value using LRT

@ Non-nested models. If no unknown parameters in either modjg N : Frequentist vs. Bayesian: No easy answers.
. o g . Quantifying Discovery: Testing Hypotheses
@ LRT follows a Gaussian distribution under Hp or H;. A Taxonomy of Tests

@ With unknown parameters (e.g., AmZ,, dcp, 023): Nested I: One-sided Tests
@ Std theory (Wilks, Chernoff) goes not apply: dist'n of LRT unkno
@ What is null distribution of 0 when fitting H; ?

Nested |: One-sided Tests

@ Some results, but strong assumptions (Blennow, et al. arXiv:1311.
Apply to reactor neutrino experiments, not accelerator experiments involving écp (Emilo Cig [+ ] HO : 9 S 90 VvVersus H1 : 0 Z 00_
@ Low power owing to degeneracy. ) 5 ) >
e What about uncertainty in |Am3,|? © Eg, Ho:Amz, <0 versus  Hy: Amg, > 0.

Are we back to Monte Carlo (toys)? at5c?

P-values: p-value = sup Pr (T( Y) > T(Vobs) | 9) (Use Wilks Thm.)
0<0o

Bayesian: Avoid py(y) and pao(y): Pr(Ho | y) = Pr(6 < 6 | y).
@ Requires only one model and one prior specification.
@ Can incorporate external knowledge into Bayesian
analysis via prior, e.g., |Am§2\ =2.434+0.13.
@ Mass hierarchy can be handled this Way (trequency or Bayesian)
...much easier than non-nested model comparison.

Again methods give consistent results. imperia colege

https://indico.cern.ch/event/735431 /contributions/31
37832 /attachments/1785472/2906708 /phystatnu-
summary.pdf

David A. van Dyk PhyStat-» 2019



https://en.wikipedia.org/wiki/Likelihood-ratio_test

Testing for the Mass Hierarchy

* ['m actually fairly sure that neither of those framings are right.

— First, non-nested: this generally refers to two totally different models,
often with different numbers of parameters.

— Second, one-sided: all log-likelihood tests are one-sided (“more extreme

than..”)

e Two-sided tests only make sense when the test statistic is drawn from a
symmetric distribution under the H,,.

 What we have is a likelihood ratio test with a composite hypothesis:
— H,: 0isin a subset 0, of all allowed values ©
— H;: 0 isin the complement of 9,

* The likelihood ratio test statistic then is:

sup(L(f|x) : 0 € ©g)
sup(L(0|z) : 0 € O)
\/

Equiv. to profile over 6 in ® to maximize L. 24

T(x) =



Testing for the Mass Hierarchy

T(x)

sup(L(0|x) : 0 € O)

Sup(ﬁ(@‘x) 0 € @) Applying In...

F(QZ‘) — X%H (ZC) o X]Q?)estFit (:lj‘)

This corresponds exactly to
how we construct our mass
hierarchy test on NOVA.

Still need to worry about the
distribution of T.

In some limiting cases they
can be normally distributed
(not x?).

In practice, usually still need
p-experiments.

There is still an additional
subtlety...

FC for Mass Hierarchy in NOVA

* Deciding if any individual point 0, is outside a CI is equivalent to a hypothesis
test where H, is 0 = 0,

— Same FC technique used for setting CI’s can be used for this hypothesis test.

+ Since our best fit is in the NH, we want to know how strongly we reject the IH.
— So H,is IH and we generate pseudo-experiments at our best fit in the IH.
— Follow the FC procedure with:

x2(test point) - y2(best fit) | y2(IH) - x2 (best fit)

— If an experiment has a best fit in the IH, then the difference is o.

This pile-up at 0 behaves like a physical boundary: it increases significance.
NOVA Preliminary

20 Standard y2 ] | Limiting Case: No sensitivity
(2] ]
§0'4 F(x|©) 7 |+ Half of experiments in each
>03 Data Ay?=2.47 1 hierarchy and A2 = 0
Boo p=0.076 ] |[*P=05
% or1.80 1 |* 50% for either NH or IH
a0 1 |+ All “prior”
Alex Hir(m)ﬂﬂel 2 4‘1 é

sz




https://indico.cern.ch/event/735431 /contributions/3268205 /attachments/

Ca refu I Wit h p_va I ues 1785184/2906147 /cousins_phystat-nu_cern_jan2019.pdf

* A p-value can only exclude the null hypothesis, it cannot accept
the alternative.

— Practical example: can get a small p-value for the IH because the NH
is true, but can also get a small p-value because the fit is just bad.

— In the latter case, would also get a small p-value for the NH.

* This is what CLs set out to solve, but a ratio of p-values is not a
well-defined thing among statisticians.

* Good advice from Bob Cousin’s: report both.

Read (2000) suggested excluding H; only if

1—p1 _ PI’(T<L)hs|H1) < a
1— o Pr(T < bows|Ho) —

CLs =
Exclude H; if T < tws much less likely under H; than under Hy

Bob C: Better to report both p-values.
DvD: Three parameter sets: no sensitivity, excluded, not excluded. | 2°




https://indico.cern.ch/event/735431/contributions/3137795 /attachments/

M a SS H |e ra rc hy at S K 1782627/2900801/Phystat_Atmo.pdf

Mass hierarchy significance 11
Super-K results

Plot for SK atmospheric only
107

§ [ SKTruelH | AxX%y,,=-4.33
;,:’ - SK True NI;Id R A
3 10 4 7N
% 10°E .
a =
| I}
10453

P-values and CLs for IH exclusion

P-values Lower Best fit

SK+T2K 0.004 0.023 0.024

model
Best fit

PRD 97, 072001 (2018) 7




https://indico.cern.ch/event/735431/contributions/3137791 /attach

Bayes lan Mass Hierarc hy ments/1783219,/2902091/2019-01-23-Ibl-stats.pdf

Bayesian for Mass Hierarchy in T2K

« Binary parameters are no problem: simply integrate the
posterior within each choice.

— This is my favorite feature of doing a Bayesian analysis.

sin20,; < 0.5 sin20,; > 0.5 Sum

 Bayes factor of 8 preferring the Normal Hierarchy...
— ...but most physicists have no instinct for Bayes factors.

28



Bayesian Testing

PHYSTATnu 1/22,2019

4 N

Two Types of Bayesian Problems

I. Estimation (confidence limit) problems: In principle, they are
straightforward.

e There are optimal prior distributions for most problems (e.g., reference
priors - although their derivation can be difficult).

e Implementation of Bayes is usually easy, through MCMC.

II. Hypothesis testing or model uncertainty problems: Not so easy.
e Sometimes one can use the optimal estimation priors, but often not.

e In the latter case, the answers can be quite sensitive to the choice of
prior,

— so that one often seeks a robust conclusion over the choice.

e Computations can be much more difficult.

. 4

3

NH vs. IH is more like an estimation
problem than testing two different
models against one another.

— Both NH and IH have the same prior so in
the ratio (Bayes factor), the priors cancel.

What saves the day fOI‘ TZ K? https://indico.cern.ch/event/735431/contr

ibutions/3137764/attachments/1783073/
2901754 /phystat2018.pdf

29




Unfolding

30



https://indico.cern.ch/event/735431 /contributions/3275244

W h at iS U N fO | d | N g ? /attachments/1784103/2904689 /PhystatNu_2019.pdf

The unfolding problem

@ Any differential cross section measurement is affected by the finite
resolution of the particle detectors

e This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one
e The unfolding problem is to estimate the true spectrum using the
smeared observations

o| lll-posed inverse problem with major methodological challenges

Folding

Unfolding

Figure: Smeared spectrum Figure: True spectrum

Mikael Kuusela (CMU) January 24, 2019 2/26



https://indico.cern.ch/event/735431/contributio
ns/3137825/attachments/1784529/2904828/20

W h at d O yo u m e a N ’ ”i | | - p O S e d ? ! 19-01-24_phystat-hepunfolding.pdf

Matrix inversion example %

Truth
%400_— %’ + >
O 5 G 300F + - reconstructed £ 8 :::‘1'21’3'0“ result £
B : b [oectooms |2 i e S anea 01 [
Z 500} 8 2200F, ¢ 8 % 8
F *
100f 100F %, n
% 20 40 0. 20 - 40 40
P,/ GeV P;(rec) / GeV P,/ GeV
migration probabilities . . ” lati fHicient
| Result shows “oscillating” structures. o e

Large (anti-)correlations between bins.

P;(rec) / GeV

Qualitative explaination:

Overflow bin

. Finite detector resolution o washes out
40 differences between bins. Unfolding “replaces”
ki ol ki the missing information by statistical “noise”
— statistical fluctuations are amplified

P;(gen) / GeV

January 2019 S.Schmitt, PHYSTAT-nu 2019, Unfolding: collider experience
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The Regularization “Solution”

Tikhonov regularization, P(A) = ||A||?, varying §

d=1e-05 d = 0.001

1000| — A= 5 | | igg 3 S H
il {Uwﬂl ™ It

Oiliﬂ ﬂl 1[1 ‘ﬂ I | ‘lH 200 I 1
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Mikael Kuusela (CMU) January 24, 2019 10 / 26



https://indico.cern.ch/event/735431/contributions/326813

* L-curve can be 30
formed on real
data - data driven
regularisation

HOW mUCh to regularlze? 5/attachments/1784286/2904287 /funfolding_phystatv2.pdf

Regularisation op’r|m|sc1’r|on The L curve
= 90F” -
+ Balance E 805 E
regulation with :2 Job. E
bias by choosing & - -
the “kink” in the g“;‘ E
curve ¥ S0E E
40 —§

10

100 200 300 400 500 600 700 800 900
x? of fit
+ Well established method to select the smoothest of many

almost degenerate solutions:

http://epubs.siam.org/doi/abs/10.1137/1034115
http://epubs.siam.org/doi/abs/10.1137/0914086 http://arxiv.org/pdf/1205.6201v4.pdf - use in TUnfold

On

Stephen Dolan PHYSTAT-nu 2019, CERN 19 34




Events
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Solution 1: Undersmoothing

Binwise coverage, Undersmoothing

- 08
S
Sorhem o oome o a m = 90
@
: %
g 06 —
3 «— 80
E 05 o
% o % 70
]
03 g

o
[N

5 10 15 20

Binwise coverage, ScanLcurve

e
™

o

Coverage (1000 repetitions)
o o
w

o
'S

Bin

LA L L L L L L L L  L  INL
reg = (0.025 Prior model .
Selection model .

Data -

Preg = 0.05 =
Preg = 0.75 =
pieg =01 E
Selection model .

Prior model Data _
lllllllllllllllllllllllIlllllllllllllllllll:

100 200 300 400 500 600 700 800 900
x? of fit

* In general, the optimum point from the L-curve under-reports errors.

* By under-smoothing, you get more spikiness, but better represent the

uncertainty.
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Solution 2: Regularizing with a Weiner Filter

1/23/2019

Wiener-SVD Unfolding

d Inspired by the popular Wiener Filter used in digital 3000
signal processing to maximize signal-to-noise ratio

2 Apply Wiener Filter to SVD spectrum (“effective

frequency domain”)

= Construct WF based on expected signal (event counts) and

noise (fluctuations)
2 Advantage

= Avoids the scanning of regularization strength

PHYSTAT-nu 2019

18

X. Lietal. JINST 12, P10002

4000

Counts

— True

T

2000

1000

™7 T

s Wiener-SVD with C,
v Regularization C)

1 ' 1
2 RS 6 8

10

12

Neutrino Energy (MeV)

MSE 02 + bias?

= Naturally balances bias vs. variance, leading to a small MSE g 0y — ;:3;;:;:0:: :
f Regularization w :
d2 s2 IO‘E_ ---=. Wiener- S\I[)\\ (E .
PR b Wiener-SVD w/ C ]
R - U 'D . VT VK - # - \\'u:ncr-;\'[;v« tl
n +d; -s;

R : smearing matrix W . Wiener filter

_2

D : smearing in the effective frequency domain
s, . expected signal in effective freq. domain

0 02 04 06

=1: (white) noise in effective freq. domain Also see: X. Qian’s talk on Thursday

0.8

* This is the solution used by Daya Bay for their reactor
spectrum measurements.

https://indico.cern.ch/event/735431/contributions/313779

6/attachments/1782961/2902109 /reactor-stats.pdf
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Solution 3: Report Unregularized Results

Case study: CCOm in épy

+ Measure CCOr+protons cross section in missing transverse
momentum (dp7) Phys. Rev. D 98, 032003 (2018)

« Unregularised best for y2, regularised best for actually
showing anywhere
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Stephen Dolan
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But...Peelle’s Pertinent Puzzle

https://indico.cern.ch/event/735431/contributi
ons/3137826/attachments/1781943/2904065/
phystat-nu-2019-neutrino-unfolding.pdf

Fits to strongly-correlated data 2
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C
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§ —— Fake data
7]
8
50.4- ----- Best fit
_+_
+
0.2
————— —_—
—_——
T T

Some variable

x*=(D-M)'C}D - M)

®000®

» “Multi-universe”: throw random systematic universes, re-extract result

p 2 B
= X
-
g
[e]
0 (&)
.
2
5
Bin 1
k * k *
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17 39




https://indico.cern.ch/event/735431 /contributi

’ = ons/3137826/attachments/1781943/2904065/
But...Peelle’s Pertinent Puzzle phystat-nu-2019-neutrino-unfolding pdf
Fits to strongly-correlated data 2
S 0.6 cé' 5 ’ §
g —— Fake data m X
» o 4 3
e r Best fit (linear) 4 g
S 04 - -- Best fit (log) al S
(e}
.--l-l-+-l-l-l-q_ _________ —0 o
......... : —+ 2
0.2} p
] 1
00 -.-n----.--i---? 1 . i " i 1 . j--'-.---n----l-'--.‘ ....... T 0 L 1 1 1 -2
2 3 4 5 6 0 1 2 3 4 5
Some variable Bin 1
2 _ T—1 . (k) (k)
x*=(D-M)"C(D-M) Gi= ) (y,- - y,-*) (y, —Y;
universe k

» “Multi-universe”: throw random systematic universes, re-extract result

» Empirically, y — log(y), ameliorates the issue, = log-normal uncertainties on
y(?)

"“Box-Cox transformation for resolving the Peelle's Pertinent Puzzle in curve fitting", Oh and Seo 2004

» |Is this the best way to communicate our systematics?

®e00®0 18 10




Solution 4: Re-smearing instead of Regularizing

* Regularization not necessary if you re-smear after you unfold.

— Unfold in narrow bins, and then rebin into wide bins.

— Get both central values and errors right.

Wide bins via fine bins, perturbed MC

2500

o
@

Unfolded
True

o
~

2000

o
o
T

o
o
T

1500
= 1000 I T

500

'S
T

ntensity

Binwise coverage
o o

w
T

o
N
T

o
o

o
o

Wide bins via fine bins gives both correct coverage and intervals with
reasonable length?

*More unfolded realizations given in the
Mikael Kuusela (CMU)

January 24, 2019

24 / 26
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Solution 4: Re-smearing instead of Regularizing

* Might be interesting to apply to extrapolation, too.

Application to long-baseline neutrino experiments?

Reco to Far/Near True to
True E Ratio Reco E

o

ANANVO~\

T2K\

FD Prediction

Flux and Cross
Section Parameters

Measure ND Data

From A. Himmel's talk yesterday

@ This means that we are really interested in functionals of the form
Hi[f] ://kFD(S, t)rND—)FD(t)fND(t)dtdS
S;JT

@ This should be a well-behaved functional since it is resmearing the unfolded
spectrum

and no regularization, map to FD, resmear

Mikael Kuusela (CMU) January 24, 2019

@ Notice the steps in NOvA: ND unfolding — ND/FD mapping — FD smearing

@ Hence the previous discussion should apply: first unfold in ND using fine bins

25 / 26
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Solution 5: Forward Folding

Just don’t unfold!

* Producing a good unfolded result that can be interpreted
by-eye with is hard! But maybe there's another way ...

Reco Level

Truth Level

Sounds simple, in practice
quite complicated.

» Too few true variables:

— Model-dependent
true-to-reco behavior.

* Too many true
variables:

— Become prohibitive to
quantify all the
uncertainties.

+ A tool for forward folding analyses
« Builds response matrix
+ Tests model dependence
« Evaluates uncertainties

Response Matrix Utils (Lukas Koch)

ReMU! !

« Compare model to data (likelihoods, p-values,

*  More information: https://remu.readthedocs.io/

MCMC)
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Uncertain Uncertainties

HOWEVER: the main question is to make sure one does not misevaluate what one
knows (information) or does not know

Two quotes to conclude:
-- OK to use a parametric fit to a well known problem (v oscillation, Z line shape etc.)
-- It is however not recommended (i.e. should be forbidden really) to fit some data
with a convenient but arbitrary or unsure or model-dependent function
(i.e. fit looks good) and act as if the error matrix of the fit represents
the uncertainty on the fit data. It does not, -- and this can go very wrong!

https://indico.cern.ch/event/735431/contributions/3137766/attachment
s/1783324/2902298/blondel-Phystat2019-neutrinos.pdf 44



https://indico.cern.ch/event/735431 /contrib

A Cautionary Tale: MiniBOONE CCQE  onthesnion sysassovoont 02

Experiments confronting data/MC discrepancies

Experiments need a model that describes their data

However, often, data/MC agreements are handled in a non-satisfactory way
« Overemphasising own data - breaking consistency with other neutrino data

 Largely ignoring complementary constraints from charged-lepton and hadron scattering

A typical (and conveniently old and

x10™%° :
&; 18 P non-controversial) example comes
S 16 . RFG model (M™"=1.03 GeV, x=1.000) from the MiniBooNE experiment:
N‘\
g 1450 —eeen= RFG model (M{"=1.35 GeV,x=1.007) : .
L 12 L Tweaking axial form factor parameter
“0810 RFG model (M, =135 GeV,x=1.007) x1.10 s Axiglrnass 1.03 > 1.35 Gov
E 8 Nominal model * Not consistent with bubble chamber resuits
6
4 Tweaking Pauli blocking
| * Not consistent with textbook physics

% 02040608 1 1214 16 1.8 2  Good description of own data.
Q¢ (GeV?) But wrong physics!

45
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https://indico.cern.ch/event/735431 /contributions

Ad H OC Pa ram ete I'S /3137831 /attachments/1785482/2906728/Neutri

no_Summary_PHYSTATnu_2019_final.pdf

~N) <

Have we |learned from this? VI VI/‘

* Yes, we have learned. * No, we haven’t learned.

It is however not recommended (i.e. should be forbidden really) to fit some data
with a convenient but arbitrary or unsure or model-dependent function
(i.e. fit looks good) and act as if the error matrix of the fit represents

] Our models for neutrino the uncertainty on the fit data. It does not, -- and this can go very wrong'
interactions have improved ‘ ) =
their description of the data.

2p2h Shape Dial on Carbon

* We include more possibilities .. preliminary, _ Petatike
. . . R—— ominal
in trying to describe 9 Not Delta Like

differences between data and

interaction models.
NEUTRINOS

oco E.‘.. [GeV]

. T2K fItS an ad hoc fugelta like” TO ND data.

25 January 2019 K. McFarland, Neutrino Summary 31

* C(lear potential for “over-fitting”:
— Data used to establish need for a fix, the form of that fix, and the parameters.

* But, without theoretical guidance, it is hard to avoid.
46



Uncertainties from Theory

* That being said, theory isn’t necessarily a panacea...

~N <
Uncertainty estimation by survey of ) v
theory models U YU
* This has an obvious and fatal * Dave Soper compared this method to

failure mode. attempting to measure the width of a

25 Januar y 2019 K. McFarland, Neutrino Summary 35




Uncertainties from Theory

* That being said, theory isn’t necessarily a panacea...

~N <
Uncertainty estimation by survey of J v
theory models U YU
* This has an obvious and fatal * Dave Soper compared this method to
failure mode. attempting to measure the width of a

* Sheep read each others’ papers. valley...
* |t’s just wrong.

* But we continue to do it because
often there are not
straightforward alternatives.

* In the PDF community, this was
addressed by fitters explicitly
producing uncertainties as an
output.

... by studying the variance of the
position of sheep grazing in it.

25 January 2019 K. McFarland, Neutrino Summary 36
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Tensions in Datasets

 What to do when trying to fit
theory to data, but datasets
disagree?

* Picked one cross section
example at right, but brought
up numerous times.

— Another common example:
sterile neutrinos.

* (Genie’s solution:
“partial tunes”

— Several tunes which only fit
consistent datasets.

— Up to the user to decide
among them.

https://indico.cern.ch/event/735431 /contributions
/3137831 /attachments/1785482/2906728 /Neutri
no_Summary_PHYSTATnu_2019_final.pdf

Tensions in neutrino interaction data

Example: Tensions between data from modern experiments

* G18_02b: An improved empirical model in GENIES.

* G18_10j: A more theory-based model configuration in GENIES.

1 Cosf, £[0.1;0.2] | 1 Cosb, €[0.8;0.9] |

MiniBooNE data MiniBooNE data

N
T

ey
T

22olv ,CCOn)/a Coso /0 T, [10'3a cm?/GeV/n]
a2o(v L CCon)/a Casllu/ir T, [10'“ cm?/GeV/n]

P

o

GENIE tune x&/ndf

G18_02b_00_000 | 330/ 137
G18_10j_00_000 | 63.7 / 137

MiniBooNE data

prefers G18_10j

Cosb, €[0.95;0.975]
1 ) I

= FEEIrriEE P EE LT F

T2K data

o
[

%0l Cosb /o P, [10°>° cm2/GeV/n]
o
H

GENIE tune x2/ndf
G18_02b_00_000, 73.9/80
G18_10j_00_000 | 80.4/80

T2K data

prefers G18_02b




Errors on Errors

I DONT KNOW HOW To PROPAGATE
ERROR CORRELTLY, SO I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.

https://xkcd.com/2110/
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Errors on Errors

I DONT KNOW HOW To PROPAGATE
ERROR CORRELTLY, SO I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.

https://xkcd.com/2110/

* Letthe true g# be unknown.

e vy;is our estimate based on the data
— Equiv. of a “pull term”

* r;is the fractional uncertainty on o/

i u; —

i=1

In L(p,0) = In P(y|p, 0) —

t\Dlr—*

InL'(1,0) = InL(u.8,02,)

In limit of small »,, v,

» i

quadratic form seen with known O,

G. Cowan

PHYSTAT-v 24 Jan 2019 / Statistical Models with Uncertain Error Parameters

https://indico.cern.ch/event/735431/contributions/3268138/attac
hments/1779397 /2894151 /cowan_phystatnu_ErrOnErr.pdf

— 0, 7 and the log terms revert back to the

51




Errors on Errors Example: Find a Mean

> 25

20

15+

10

Known Systematic
(r;=0.01)

u=1000+063 * data

> 25

204

Uncertain Systematic

(r;=0.2)

i =10.00 065 + data
/ ;
S

T

[f the data is well-behaved,
they give ~the same mean
and confidence interval.
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Errors on Errors Example

> 25

20

15+

Known Systematic
(r;=0.01)

u=10.00 £0.63 * data

B

i\ i

Outlier makes a big change
in u and no difference to CIL.

~

> 29

20 +

15}

10

/

¥

ii=12.00£063 ¢ data

: Find a Mean

Uncertain Systematic

(r.=0.2)
> 25
ii=1000+065 « data
20 | - F
15 }
] s

Outlier leads to bad goodness-
of-fit, which widens CI and
doesn’t change u as much.

b L

> 29

20 +

15+

10

\

\

i=1075%0.78 * data

po
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Conclusions

* The space of possible statistical analysis is much larger than it seems.

— The right statistical technique is generally problem-dependent.

* Often, it seems like there’s 1 right way, because it's been done before
— ..orit’sin the PDG
— Not necessarily bad! If a technique is well-known, less justification is needed.

* But, be careful of assumptions!
— Everything that seems “simple,” assumes a certain kind of problem.

— If you don’t meet the assumptions (small stats - looking at you), then the
answer isn’t valid even if the technique is familiar,

* Isittime for neutrino statistics committees?
— The big LHC experiments have standing committees to discuss these issues.

— Most neutrino experiments are too small by themselves (notable exception:
DUNE), but maybe if we join forces?
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