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Outline

 Liquid Argon Time Projection Chambers

» Recent innovations in Computer Vision

» Deep Neural Networks for data reconstruction
 Wrap-up
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Disclaimer

In this talk ...

« Mainly story-telling of what’s going on
« No physics results

« No comparison with traditional reco
 Very few distributions, mainly figures

£

) (5
215 0 TP AR T 0 G P vl VAR VA SN TR TR IS SIS ETS

B SRS L N RS L AN RN L NN Ol NS L R AN AN AN

@.




ONE _

<=

Liquid Argon Time Projection
Chambers

Outline

e Liquid Argon Time Pro_]ectlon Chambers

» Recent innovations in Computer VlSlOIl

» Deep Neural Networks for data reconstructlon
—«"Wrap-up N

Run 3493 Event 41075, October 23
75 cm 4



Neutrino Oscillation Measurements

What detector technology?

Three important detector features for oscillation measurement

1.27 Am? L
P(v, = 1) = sin®260sin? (m)

L,

Good Energy Large Mass Particle ID
| Resolution B (scalable) B Capability &




LArTPC: Particle Imaging Detector

Vy ====m==e=-- S ALL MicroBooNE
S ~87 ton (school bus size)

\%_ v
il

e | f
hamber

Bubl‘)l"e 'C

f Liqid gon Time Projection Chamber

» Chamber-like images: digitized electronics readout

2015

 Calorimetric measurement + scalability to a large mass



LArTPCs for Neutrino Oscillation Experiments

| SBN Program
~ at Fermilab

=3

ICARUS T600 MicroBooNE SBND
~476 ton @ L =600 m ~87 ton @ L =470 m ~112 ton @ L=110 m Vu beam

SBN FAR

ereron R i * (BNB)

Sanford Underground
Research Facility

Fermilab
NEUTRINO //
PRODUCTION .

PARTICLE |
DETECTOR PROTON

ACCELERATOR

L UNDERGROUND

PARTICLE DETECTOR
L EXISTING

LABS




How MicroBooNE LArTPC Work (I)

1. Charged particles interact in Ar

e [onize argon
e Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Cathode @ 70 kV
(plate)

Electric Field
~270 V/cm

Anode
(wire plane) }

X=25m

A

ur ¢°¢



How MicroBooNE LArTPC Work (11)

1. Charged particles interact in Ar

¢ Jonize argon

e Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Y74

<
<«
&
/'4
‘(K

K

Cathode @ 70 kV
(plate)

Electric Field
~270 V/cm

/

SCintillation Light Y U 245 5 R A R A A A A A 0 A A

Anode
(wire plane)

X=25m

A

ur ¢°¢

Scintillation Light
detected by PMTs




How MicroBooNE LArTPC Work (111)

1. Charged particles interact in Ar

e [onize argon

e Produce scintillation light
2. Ionization e- drift toward anode
3. Wire planes detect drift e-

Three

X=25m

1

Drift Time = X position A

} /1

Wire Planes
». P Y 4

Electric Field
~270 V/cm

Cathode @ 70 kV
(plate)

Anode

(wire plane)

A

ur ¢°¢

Charge collected
by wire plane

Scintillation Light
detected by PMTs ¢




How MicreBoeNE LArTPC Work (IV)

Pixel (DUNE ND)

1. Charged particles interact in Ar
e [onize argon
e Produce scintillation light
2. Ionization e- drift toward anode

3. Srepimney detect drift e-

pixel detector

X=25m

| Drift Time = X position ; T
N

> [ >

i =

J. Assadi et al. arxiv 1801.08884

Electric Field
~270 V/cm

Cathode @ 70 kV
(plate)

O
O
O
>
N
> [
u 3‘&
N Q°
>/ )
A
Scintillation Light
“% detected by PMTs ¢
Charge collected ~
by pixel-pad plane

Anode

(wire plane) }



https://arxiv.org/pdf/1801.08884.pdf

LArTPC: Particle Imaging Detector
... putting everything together ...

3D Imaging
. | Pixel Detector)




Challenges in LArTPC Data Analysis?

100 cm

100 cm

L ]

. i
I v Pl

There may be lots of backgrounds '

Cosmlc Data : Run 6280 Event 6812 May 12th 016




Challenges in LArTPC Data Analysis?

100cm | :
= ~ 14 cm X 14 cm | Bt
Z Y < et ..': y '
O uBooNE "'
- . |
vy ¥
‘ =200 CIm
MicroBooNE i | meb / /)
T Simulation .'“-. | ‘ ' \
\ | | —— e 3465 v 3223 oo 2, aus |

Interaction vertex can be anywhere
in LAr, varying in size (cm meters)

Cosmlc Data : Run 6280 Event 6812 May 12th 2016




Challenges in LAr'TPC Data Analysis?

| Cosmics

1] . -/ Cosmics

Must identity event vertex
+ neutrino interaction topology (partlcle types)

Run 3469 Event 53223, October 21°, 2015 /
15

55 cm



Challenges in LAr'TPC Data Analysis?

nBooNE _

Cluster energy depositions
for an accurate calorimetry

24 cm

40 cm Run 1153 Event 40. August 6™ 2015 21:07
16



Challenges in LArTPC Data Analysis?

>

Run 1463 Event 23. August 15t 2015 10:37




Challenges in LArTPC Data Analysis?

Programming pattern recognition algorithms is
non-trivial, need full-chain optimization

01101010100101011010101001011010 ==
110111010101001010100010010101101
0101001011010101001010110101010
01011010101001010110101010101101
0101001010110101010010110101010
01011010101001010110101010010110
10101001010110101010101101010100
10101101010100110101101010100101




Challenges in LArTPC Data Analysis?

Solution?

» The core: pattern recognition challenge
« Most of analysis/reconstruction “trivial by eyes”
- motivation to try neuromorphic algorithms

 Solve the “full chain optimization” issue by design




“Fake” celebrity images
generated by DNN in
1024 X 1024 resolution

Outline

 Liquid Argon Time Projection Chambers
e Recent innovations in Computer Vision
» Deep Neural Networks for data reconstruction
« Wrap-up

20



Classic Problem: Image Categorization

A cat
|+ “Cat” = collection of
certain shapes

21 Taken from slides by Fei-Fei’s TED talk



Classic Problem: Image Categorization
... how about these?

Partial cat Stretching cat

(escaping fiducial volume) (DIS?)

E A




The Year of Breakthrough: 2012

‘The field of computer vision celebrated |
Birth of “Deep Learning” |

> 20,000

;AlexN et8-laers deep »neural networ‘ e

For my reference

container ship motor scooter

jaguar

cockroach ibi cheetah
tick bumper car snow leopard
starfish illi golfcart Egyptlan cat

M’”ﬁ

(Y
}f// ?(/ r;)\

agaric

mushroom
jelly fungus elderberry - titi
beach wagon | gill fungus |ffordshire bullterrier | indri
fire engine || dead-man's-fingers currant || howler monkey



The Year of Breakthrough: 2012

9000 CMS Preliminary —4— S/B Weighted Data

,\ We celebrated i
discovery of non-zero 03, |
¢ discovery of Higgs, etc. |

[
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The Year of Breakthrough: 2015

" Physicists discovered
a gravitational wave
(GW150914)

- .

s 3 2 R 128 | |

2

32t E
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512 t t ; t
256 | 1
128 | .
64 | !
32t S .
LIGO Livingston -,'.‘-\[»/\’M\f\/\fb N
1 | 1 1
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The Year of Breakthrough 2015

- They celebrated
i Super-human performance |
| on image categorization task |

Revolution of Depth

152 layers 'bdeep_ neural network
A\ > 7,000
\ citations
\\ 16.4

\
\
\
22 Iayers 19 Iayers
\ 6.7
3 57 I_ I Iayers 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)




The Year of Breakthrough: 2015

L i

boat : 0.853 - \ person 0.993

J) person : 0.972 ,
iﬁ. | person : 0.981| »w,
/4 - = » person 0907 '
Y - == _y i '
== e L gA 2 riy

3

tep ~p 0l

Image Classifiction Object Detection
(what?) (what + where?)

a demonstration of generalizability to
_problems beyond image classification




The Year of Breakthrough: 2015

7 iR pe.réon 10.910 ‘.\“ person : 0.998 ...

© person 0.998 * umbrella: 0.910

ﬂ They'celebrated - : |
{ a demonstration of generalizability to |
| problems beyond image classification



The Year of Breakthrough: 2015

person
person

sports ball

Pixel-level donuts



Deep Neural Network
Applications

Outline
Argon Time Pr

ojection Chambers
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Image Classification for Physics Analysis
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(~2016)

for Physics Analysis
Beyond Object Detection

Key insight: “localize” a
“distinct feature” in data

First step toward utilizing DNN
for LArTPC data reconstruction

LT
l\l‘. A.
A
:‘ \'

Yellow: “correct”
bounding box

Red: by the network

Network Output

- MicroBooNE | . ~ 2.6m (width) x 1 m (height)
Slmulatlon + Data Overlay



https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1611.05531

(2016 ~2017)

Deep Neural Network for Reconstruction

Extreme localization at the pixel level

« U-ResNet can identify the pixel-level features

- Any categorization at the pixel level (reusable algorithm)
- Made one of the first fully automated ve search possible

N
\ £ MicroBooNE
h Simulation '
Preliminary

MicroBooNE
Simulation
Preliminary




(20;6 ~2017)
Deep Neural Network for Reconstruction

Extreme localization at the pixel level

« U-ResNet can identify the pixel-level features
- Any categorization at the pixel level (reusable algorithm)
- Made one of the first fully automated ve search possible

- Can analyze to find where “unexpected response” comes from

30 cm g 30 cm
/ Real Data Image il l i / Network Output i l

w 08
w 08

- '\‘

/ | N\
\ / AN

b
l{_.
\ . \ a
\ < \\ / /
‘ Wy

. cosmic Yy |1

; . T cosmic P
HB@ — Vu -~

BNB Data : Run 5419 Event 6573 March 14th, 2016

o

BNB Data : Run 5419 Event 6573 March 14th, 2016




(2017~)
Deep Neural Network for Reconstruction

Extreme localization at the pixel level

« U-ResNet can identify the pixel-level features

- Any categorization at the pixel level (reusable algorithm)
- Made one of the first fully automated ve search possible

- Can analyze to find where “unexpected response” comes from
- Generalizable to both 2D and 3D data



https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
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https://indico.fnal.gov/event/15722/

(2018~)
Deep Neural Network for Reconstruction

Feature space point finding via regression

« PPN: two piggy-backing subnetworks

- Proposes “particle trajectory start & end” in 2D/3D

- Can be attached to an image classification network or U-ResNet
- Can run in real time (= 60 FPS for 756 x 756 pixels)

PPN1 proposes — PPN2 regress
: _~f3 | e EEEE . . | e o
Region-of-interest pEn particle edge points -
22 ’ NEEN e
g ; j=f= K - !!,-‘
€ U w | & e Ar
RN / . y
s | /




(
Deep Neural Network for Reconstruction

Feature space point finding via regression

« PPN: two piggy-backing subnetworks

- Proposes “particle trajectory start & end” in 2D/3D

- Can be attached to an image classification network or U-ResNet
- Can run in real time (= 60 FPS for 756 x 756 pixels)

PPN2 regress |
Pixel distance between particle edge points - @
the proposal and e -
closest truth point o
€ 7 o H Ll_
~ e
Shown e e

@ DeepLearnPhysics

Example partlcle edge points prediction by PPN
(In particular, piggy-backing on U-ResNet)



Deep Neural Network for Reconstruction

Where we are heading toward

» Full reconstruction chain
- Individual particle clustering & trajectory reconstruction
- Interaction topology + particle hierarchy reconstruction
- Energy reconstruction
« Modular design: plug & play to choose DNN vs. human-
engineered algorithms, keep capability of full chain optimization




DeepLearnPhysics

» Group of physicists mainly from

neutrino TPC experiments

- http://deeplearnphysics.org
- MicroBooNE/SBND/ICARUS/DUNE/

DeepLearnPhysics

NEXT/nEXO/non-HEP ...
» Share software tools + open data
,
BEE » Meetings/Blog posts to share
ERE experience, discuss problems, etc.
2D Data Set 3D Data Set

Y | Ba potte 11;$| t05;393' :
A - B &
- = L ‘ {‘i 2 ,5 J é
S
«:Kg!? «.f’"‘?e :

\



http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
http://deeplearnphysics.org
https://github.com/DeepLearnPhysics
http://deeplearnphysics.org/DataChallenge
http://deeplearnphysics.org/Blog

Open Source Software Development@ DLP

» Image/Volumetric data processing framework

- Experiment agnostic design, Qt/OpenGL based visualization
toolkit, C++/CUDA based software with extensive Python APIs

- Interface to DL frameworks (MXNet, Pytorch, Tensorflow),
Singularity container distribution for cloud deployment

ggggggggggg

vl Workshops to share
@ March 2018 | 22 S ~ & raise expertise
| i1 « “GPU for everyone”: using free
ﬁ K80 GPU from Google cloud
* Where we synergy across fields
» Collaboration with Stanford
campus CS/ML, Cryo-EM,
accelerator, photon-science,

S h- ) Ja
N

40



more exclting projects

vector arithmetic
of visual concept
arXiv:1511.06434

Smlhng ‘ Neutral Neutral
Women Women Man Man

Smlhng



https://arxiv.org/pdf/1511.06434.pdf

SBND Cosmic Rejection w/ U-ResNet

4

LR U T

Collection plane view,
similar performance

on induction planes
(from C. Adams)




Our Input

Each “pixel” is the integrated ADC response in that time/
space slice. These maps are chosen to be 500 wires long
and 1.2ms wide (split into 500 time chunks).

Induction View Induction View Col. View

500 500

500

400} . 400} . 400}

Time
Time
Time

100} ya 1 100} AN 1 100}

d ! ! ! ! ! ! ! N ! ! ! ! \'T\
0 100 200 300 400 500 0 100 200 300 400 50! 0 100 200 300 400 500
Wire Wire Wire

(\ Alexander Radovic Sllde ]_/3 fI‘()m A RadOViC



DUNE FD Events, With Oscillations,

osure
N
o
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NuMu Selected Event DLl
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Neutrino Beam

Survived NuMu
—— Beam NuE
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Slide 2/3 from A. Radovic



DUNE FD Events, With Oscillations,

Arbitrary Exposure

NUE Selected Events, Recongps

Energy Spectra

Neutrino Beam

Survived NuMu
—— Beam NuE
— NC
— Appeared NuE

50

—— Appeared NuTau

Work in progress
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n-nbar Search in DUNE FD

Deep Learning application for rare event searches
(and more) in DUNE

Group: Georgia Karargiorgi (Columbia U/U
Manchester), Jeremy Hewes (formerly U
Manchester), Yuyang Zhou (Columbia U)

CNN application in DUNE: originally
developed as a DL-based analysis for a
search for rare neutron-antineutron

oscillation events (B-violating signature) in
DUNE.

WENCEENEN = agan e NEVIS LABORATORIES
e~ Ill" COLUMBIA UNIVERSITY

Simulated n-nbar
event in DUNE;
striking (“star event”)
topology




n-nbar Search in DUNE FD

CNN-based search for n-nbar in DUNE

J. Hewes, FERMILAB-THESIS-2017-27
vgg16 network

B Background (atmo v)

120000

Trained to differentiate n-nbar events
from atmospheric neutrino events*®

(training samples of 50k events), and
tested (samples of 200k events).

80000

No. of events

60000

20000

0
00 02 04 06 08

*atmospheric neutrino events expected i
to be the dominant background in DUNE

An optimized cut on CNN score
yields signal efficiency of 14%

MANCHESTER J— background mis-ID rate of 0.003%
ST — NEVIS LABORATORIES
The University IHI COLUMBIA UNIVERSITY




n-nbar Search in DUNE FD

£
CNN-based search for n-nbar in ' R(gg

J. Hewes, i . fOI’

140000 Signal (nnbar) O'I]] ° °
195 BN Background (atmo v) 112 1
€ty 10N
1 Igge
- DUNE sensitivity (10kt/yr)
- DUNE sensitivity (full 40kt)

- = Super-Kamiokande limit (90% CL

Free lifetime sensitivity (90% CL) [s]

— 0 02 04 06 08 1.0
Super-Kamiokande bound limit 1.9e32 yrs CNN Score

Resulting projected sensitivity of

0 2 e el : © | DUNE for given efficiency and mis-ID
rate, as a function of run time.
R Sensitivity shows 5x improvement
MANCH{%%EER 0 NEVIS LABORATORIES y tS EI' it
— "u“ COLUMBIA UNIVERSITY over current super-A Iimit.




Distributed CNN Training at PNNL % Pacific Northwest.

E. Church, J. Daily, C. Siegel, M. Schram, J. Strube, K. Wierman Proudly Operated by Batlelie Since 1963

P> Full event image: 3600 wires x 3600 time bins x 3 planes x 4 Bytes
B MicroBooNE simulated single particle events
B ~150 MB / event

P> Even a moderately small network only leaves room for a mini-batch size of
1-2 events on a modern GPU, for full event fidelity

Bl This is smaller than required given the latent space of the CNN — slow
development. Distributed scaling of compute resources will help significantly.

Bl Scaling allows increase in network depth too (if required)

P> For deep learning, one wants large training samples.
Bl Training may become quickly I/O bound and hence prohibitively slow

Bl Even a dedicated "large-mem” node cannot fit more than a few thousand samples
iInto memory, at best.

— We are studying PNNL's MaTEXx for distributed training
Easier to "drop in” than say the uber solution, and locally supported!
— And using in-memory loss-less image compression

, DL Software @PNNL
Slide 1 / 2 from E. Church Framework Development



" 7
TensorFlow

Pacific Northwest
ABRORATOR

NATIONAL f RY

Current status (preliminary) o ot et S

Training time: mini-batch size = 2, 10000 steps per GPU ... 10 epochs
|dentical networks, loss functions, optimizers and input data
— MaTEXx does not currently introduce noticeable overhead at this scale

Training loss vs. number of GPU
1.00€+0
1.00E-2
1.00E-2
1.00E-3
1.00E-4
1.00E-5
1.00E-6

1.00E-7
5 10 15 20 25 30

For the same wall time, training improves with number of GPUs
— Studies ongoing, significant updates planned for CHEP2018

, DL Software @PNNL
Slide 2 / 2 from E. Church Framework Development



More Exciting Stuffs ... come chat w/ me :)

3D voxel labeling of Cryo-EM image Multi-network Training
(below: mitochondrion detection) | Techn}ques R&D

person 1.0000

Detection + Clustering (Mask R-CNN)

of ATLAS jet images
(w/ SLAC ATLAS group)
l‘j'] synthetic s, * == }S-l ;"""" synthetic s,
. jet 0.983 - TRAINING TIME

jet 0.994

et 0-ve Pixel-Flow network for 3D track reco
(via cross-plane pixel correlation)



_— "
/ ’T’ ... Wrapping up ...
!

< Outline
" 1. Introduction
2. Neutrino oscillation experiments
3. MicroBooNE: first large-scale LArTPC 1n U.S.
4. DeepLearning for LArTPC 1mage analysis
5. Summary



Wrap Up

» Very active DNN techniques R&D for LArTPC
- MicroBooNE/SBND/ICARUS/DUNE (ND+FD)

« DNN for data reconstruction
- Modular algorithms for a full reconstruction chain
- In-depth computer-vision application development
using deep neural networks
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NN & CNN
Basics




How a Simple Perceptron Works

Background: Neural Net

The basic unit of a neural net
1s the perceptron (loosely
based on a real neuron)

Takes 1n a vector of inputs (x).
Commonly inputs are summed  mput Neuron  Activation

: . Sum Output
with weights (w) and offset ()
then run through activation. X+ b Wi-X+b; >0

vT/i-)_c’+b,-<O.

56



How a Simple Perceptron Works
Perceptron 2D Classification

Imagine using two features to separate cats and dogs

By picking a value for w and b,
domestication we define a boundary
from wikipedia between the two sets of data

S


https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

from wikipedia

58


https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

We can add another perceptron

to help (but does not yet solve
from wikipedia the problem)

5%


https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

Output
P
cat

dog

W—

Another layer can classify based on
preceding feature layer output

60



“Classical” Neural Net

Fully-Connected, Feed-forward,
Multi-Layer Perceptrons

OOO
OOOO
O OO0

O00

iInput hidden output
layer,#  layers layer, ¥

A traditional neural network consists of a stack of layers of such
neurons where each neuron 1s fully connected to other neurons of
the neighbor layers
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“Classical” Neural Net

... 1S not ideal for image classification ...

Image classification

« What is input neurons?
- Every pixel value

« How many weights?
- # of pixels in an image!

e Fully connected?
- translation variant!



Convolutional Neural Networks

CNN 1ntroduce a limitation by forcing the network to
look at only local, translation invariant features

. ’ /

- -
- -
-
e o e 0,0 o
L]
. .
e /6% oo0 o
.
.
.
L] .
L
......I.
.
.
.
e e o
) 4
)
e o o
()

neuron Activation of a neuron depends
on the element-wise product of
3D weight tensor with 3D input

feature map data and a bias term

 Translate over 2D space to process the whole input
* Neuron learns translation-invariant features

- Suited for a “/iomogeneouns” detector like LArTPC
* Qutput: a “feature-enhanced” image (feature map)
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Convolutional Neural Networks

Filter

Neuron

Activation
function

Dot product,
add bias

0
1
3
0
0
1
1
-1
0
-1

weights

Toy visualization of the CNN operation
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Convolutional Neural Networks

Feature Map

>

Toy visualization of the CNN operation

65



Convolutional Neural Networks

Introduction to CNNs Feature Maps
N Filters

Image

apply
many filters

Toy visualization of the CNN operation
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How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

Down-sampling
Feature Maps

D)
1 )
<
=
o
N
-
=¥
=
ry

| After 3rd convolution

2nd convolution
After

1st convolution

Series of convolutions
+ down-sampling
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How Image Classification Networks Work

Feature map visualization example
* https://www.youtube.com/watch?v=Agk{lQ41GaM

olbox
convl pl nl convZ p2 n<Z conv



https://www.youtube.com/watch?v=AgkfIQ4IGaM

How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling -

. B

“Written Texts”
Down-sampling feature map

Featwre Maps

D)
1 )
<
=
o
N
-
=¥
=
ry

Aftér
After 3rd convolution

2nd convolution
After

1st convolution

“Human Face”
69 feature map



How SSNet Works

Goal: recover precise, pixel-level location of objects
1. Up-sampling
- Ex atial dimensions of feature maps

2. Convolution
- Smoothing (interpolation) of up-sampled feature maps




DNN for LArTPC Data Reconstruction

How does
U-ResNet Work?

Concatenation of 512 x 512 tensors
CDl‘l\-‘OlutiDnS ------------------------------------------------------------------------ ¥

..' . . . y - | ...
Intermediate High spatial resolution lllﬁ)# o Intermediate
512 X 512 X b6: . - T 512X 512X 64
B Concatenation of tensors g g

\ at all spatial dimensions
(32, 64, 128, 256) . L
Repeat .
1/2 downsampling - -Dngerreressnrereesnre i x2 up-sampling Interpolation filters

+ ResNet convolutions + ResNet convolutions (up_s ampling)
\ ﬁ] / "+ Convolutions
_ (“learnable” filter)
Int diat
o[ P moncromenn
16 x 16 x 1024
16 U-ResNet

Down smplin + Convolutions to identify
highly abstract features (e.g. “human face”)







