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Neutrino oscillations

@ 3 v flavors: ve, v, and v,

@ v oscillation observed in various experiments since it’s discovery

» Implies that v are massive particles — must also have 3 mass states: v, 10, 3

@ Projection between flavor <» mass states via mixing matrix U:

1 0 0 C1i3 0 S13€7’ISCP Ci2
U= 0 Co3 So3 X 0 . 1 0 X —S12
0 —Sx3 C3 78136’60’3 0 Ci3 0

sj = sin 0, ¢; = cos b;

» U is unitary if only 3-flavor mixing

0
0
1

@ 6 parameters (Am§1, Am§2, 012, 013, 023 and dcp) describe v oscillations

» possibility of a Majorana term, but does not effect oscillations
@ Currently only §cp and mass ordering (sign of Am3,) not measured
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Neutrino oscillation — a schematic view

v production v propagation v detection
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Neutrino oscillations in vacuum
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012 = 34°, 013 = 8.8°, g = 45°, Am3, = 7.59 - 1075 eV?/c*, Am3, = 2.43 - 1073 eV?/c*, 6cp = 0°.
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Producing neutrinos

@ Nuclear reactors
@ Stars

@ Accelerators

@ Cosmic Rays showers
» “atmospheric neutrinos”
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Atmospheric neutrinos

@ Cosmic ray (CR) interact with
atmosphere, producing hadronic shower

» Decays produce v

® v, v, produced at ~1:2:0

@ similar rate of v and v
» however, cross-sections for 7 smaller
than for v
= at detection less & than v
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Atmospheric neutrinos
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@ v energy over several orders of
magnitude
@ CR bombard Earth from all directions
= neutrinos from all directions!

12760 km
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Matter Effects on Neutrino Oscillations

+ for neutrinos CC interactions of

- for antineutrinos / v, with matter
d ( Ve ) [ A cos(20)“i V2GrN, Afg sin(26) Ve
dt A4’g sin(26) Alfg cos(26) Vg

Matter potential modifies neutrino mixing — effective mixing angles in matter:

tan 26
AmE, = @cosze 2E + (sin20An?)?,  tan2f, = ————
i J( @) + nzane A

= +v2GgN,; + for v, and — for &

.
° @: + for NO, and — for IO

Joshua Hignight FNAL Neutrino Seminar June 16!, 2017 8/33




Matter Effects on Neutrino Oscillations
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Matter Effects on Neutrino Oscillations

3 Havor Py -v,

Prellmlnary Reference Earth Model (PREM)
Phys.Earth.Plan.Int. 25, 297 (1981)
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Atmospheric neutrinos oscillations across the Earth
up-going v [ie. cos(@ )=-1, L=1.3 10* km]
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Atmospheric neutrinos oscillations across the Earth

up-going v [ie. cos(8 )=-1, L=1.3 10" km]
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lceCube
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lceCube

50m

1450 m

2450 m
2820 m

IceCube Lab

Joshua Hignight

\

. IceTop
~ - _— 81 Stations

324 optical sensors

IceCube Array
86 strings including

8 DeepCore strings
5160 optical sensors

DeepCore

8 strings-spacing optimized
for lower energies

480 optical sensors

Eiffel Tower

FNAL Neutrino Seminar

@ Instrument 1 Gton of ice

@ Optimized for TeV-PeV neutrinos
» Astrophysical v discovered!

@ DeepCore

» ~10 Mton region with
denser instrumentation

» Pushes thresholds down to ~ 5
GeV



IceCube-DeepCore 1000m

lceCube DOM
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Instrumented Depth
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Detecting neutrinos in lceCube

@ Neutrinos interact in the ice

4l =,y
hadronic
n shower

@ Charged particles moving faster than
the speed of light in ice produce
Cherenkov light cone

@ 3D array of PMTs detect produced light
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Event topology in IceCube
@ Look for 2 distinct event topologies

Track-like events: typically v, CC events

color — hittime
size — hitcharge , '

Cascade-like events

o°3 o
30GeVy, CC— :§i " 380 < 31GeVy,CC
. S . .sg\__.‘\
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Measurement strategy for neutrino oscillations

@ Main background is atmospheric
» Use IceCube as veto to reject atm p events

@ Reconstruct v energy and direction
» oscillation distance (L) given by zenith

@ Measure oscillation by fitting L x E x PID

charge

te oo o0 ofild Bels 0o

t
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Comparison to last published v, disappearance results

IC2014 analysis

@ Results in PRD 91, 072004 (2015)
@ Focus on v, CC “golden events”

» Clear p tracks
» Several non-scattered photons

@ Use only up-going events

Similarities in both analyses

@ Atmospheric i background shape
estimated from data

@ v reconstruction resolution similar
@ Both are 3 year data sets

Joshua Hignight FNAL Neutrino Seminar

This analysis

@ Order of magnitude increase in statistics

@ Reconstruction fits full event topology
with £-based method

» Can fit events with scattered photons
» Can reconstruct all v types

@ PID variable separates sample in two:

» Track: v, CC enriched sample
» Cascade: mix of all v flavors

@ Full sky analysis
» Better control of systematics

@ Fitting includes term accounting for
statistical uncertainty from prediction
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http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072004

“Golden Events”
@ Clear p tracks

» Reduce contamination of cascades
(primarily » NC and v, CC)

2410
2
g
2420 * =
g
= 2430
= " 40 60
5]
E, (GeV
; 2440 @ Direct photons v (GeV)
o hadd ate Photons @ Require several non-scattered v
R 2450 -==+ Track fit @ select events “easy” to reconstruct
""" Track fit + 25° » 10° resolution in neutrino zenith
24600 . ‘ » 25% resolution in neutrino energy
0 50 100 150
tarrival (DS)
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Reconstructing low-energy events: £-based techniques
@ Goal: reconstruct v, CC (DIS) interactions

e

Hadronic cascade
assume same direction for p and cascade

@ Maximize likelihood (£) of hypothesis to correspond to the data
» L calculation based on tables with expected charge-time from EM cascade and u track
* Fairly complex tables to account for natural medium properties
* EM cascade energy converted to hadronic cascade energy a posteriori

@ Same event hypothesis in reconstruction also works for cascade events
» In that case p track length — 0
» Currently cannot distinguish EM and hadronic cascades

@ Distinguish between track/cascade based on presence or absence of u
» Compare L between fit with and without track
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Low-energy reconstructions: a minimization problem

Preliminary

@ 8D L space is very rough

Log Likelihood

@ Regular minimizers don’t work
= use MultiNest algorithm
by F. Feroz et al. (arXiv:0809.3437)
» designed to explore the highly dimensional
L space with multiple minima

ol e e e e
-500 0 -300 -200
Vertex Z (m)

w e v

[

o

(@) (b)

Figure 6. Toy model 2: (a) two-dimensional plot of the likelihood function defined in Egs. (32) and (33); (b) dots denoting the points with the lowest likelihood
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Low-energy reconstructions: resolutions
Zenith Resolution Range for Muon Meutrinos

Energy Resclution Range for Muon Neutrinos

lon 50% Range | °)

AR, 1 T TR | T LA . 0.8

O g Ry g Yy g gy g Py gy g g iy el g
10 16 20 25 a0 35 40 45 10 15 20 25 30 35 40 45

Trua v, Enargy (GeV) True v, Enargy (GaV)

@ DeepCore — From previous published analysis
@ DeepCore+ — From this (£-based) analysis, events classified as track-like
@ Resolutions are similar, but

» DeepCore+ has significantly larger statistics!

» DeepCore+ can reconstruct cascade-like events also
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Fitting Function used in new v, disappearance analysis

@ 30 years of MC for v components and several systematic variants

@ Data-driven estimate of atmospheric p background shape
» Similar method used in PRD sample

@ Need to account for uncertainty in prediction, especially for background muons
@ Our solution is to fit a x® function instead of a £ function.

+ fo!
(n;/ Mo nt ata)z

2 _ Z i Z (s — §)?
X = (Uuncor.)z + (Udata)z 52
I

ie{bins} Vsl je{syst} Sj

n™, nf@@: number of events in bin i for prediction (v MC + x sideband) and data

o%8; statistical uncertainty in the data for bin
o, statistical uncertainty in prediction with additional shape uncertainty in n sideband
§j, 65, central value and sigma of a Gaussian prior of systematic s;

@ Have a total of 128 bins: 8 cos(¢)x 8 Energy x 2 PID
@ All bins have a large enough number of events that a Gaussian distribution approximates well
a Poisson distribution.
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Systematics

@ Overall, the systematics can be split up into three broad categories:

@ Flux and cross-section

*

* ot % % %

Neutrino normalization

Spectral index ()

Ve + Ue NOrmalization

NC normalization

A(v/7) as both energy and zenith dependence
M:?ES

@ Detector related parameters

*
*

Overall DOM efficiency
Relative DOM efficiency in both lateral and head-on directions

© Atmospheric background
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Systematics: Flux and Cross-section

@ Flux and cross-section systematics reweight our default models.
» We use Honda'’s 2015 flux model for our default MC production (arXiv:1502.03916)
» GENIE is used for our default cross-section models.

@ A~ — energy-dependent shift in event rate:
» This can arise from uncertainty on v (nominally v = —2.66) or from uncertainties in the
DIS cross section.
* Studies on DIS cross-section included uncertainties on the Bodek-Yang model used in
GENIE, uncertainties in the differential cross-section of DIS neutrino scattering, and studies
of hadronization uncertainties for high-W DIS events.
* |t was found these were highly degenerate with the spectral-index and overall normalization
or negligible so were not included in the fit.
@ The value of M7ES was found to have a small impact on the results so is included in
the fit.
» MSCOE was also investigated but found to be negligible
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Systematics: Flux and Cross-section

@ The normalizations of ve + 7e events and of NC events,

9
defined relative to v, + 7, CC events. s [(D) E, 3-30Gev
- . . . 7 D\"\o\m“ y,o/ﬁic
@ The v/ ratio have a directional/energy dependence, so a o TS suegment
- g “Fi ine”*
more sophisticated approach was used. s Fitted line
» From the K /= ratio of the atmospheric shower g4
o . Ss3
@ Parameterizations uses predictions from Barr et al. 5
(arXiv:0611266v1) —— e
0
100 -1 -0.5 0 0.5 1
cos 6,
“Fitted line" &5 &
g © —o— vcﬁe uncertainty
20 =8 Vivy uncertainty
§10> uncertaint
_g %15 “Fitted line"*
b= £
8 A g
5 akl! o ““A““““ §10
D
—o— v N rtai R N
T Yl uncertany nmag
s— v Nouncertamty | | Trtee E, >30 GeV
o1 1 10 100 1000 °1 05 0 05 1
E, (GeV) cos 6,
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Systematics: Detector

@ By far, the largest uncertainty in our measurement comes from the detector
systematics.
@ We have one that has to do with our overall DOM efficiency.
» This just scales up and down the amount of light seen in each PMT
@ There are also two systematics related to how the local ice properties effects our
DOM acceptance.
10.34 *(1+15%x- ?.5 *X**3) + p * x ’I" (X2 - 1)**3 + p2‘ *exp(10 * (x - 1.2))
H2 model

0.8

0.6 -

0.4

relative sensitivity

02

0

oo
NN
uo

1
>
o

TTTTTTOCTTDT
o
W
<}

[N

,p2=0 ——
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Systematics: Detector

@ These effects are estimated by Monte Carlo at discrete values

@ A continuous distribution is determined by linear interpolation between the discrete
simulated values for each bin in the (energy, direction, track/cascade) analysis

histogram
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Systematics used in analysis and best fit

. Best Fit
Parameters Priors NO 10
Flux and cross section parameters
Neutrino event rate [% of nominal] no prior 85 85
A~ (spectral index) 0.00+0.10 -0.02 -0.02
Ve + Ue relative normalization [%] 100420 125 125
NC relative normalization [%)] 100+20 106 106
A(v/D) [o], energy dependent? 0.00+£1.00 -0.56 -0.59
A(v/7) [o], zenith dependent? 0.00+1.00 -0.55 -0.57
My (resonance) [GeV] 1.12+0.22 0.92 0.93
Detector parameters
overall DOM efficiency [%] 100+10 102 102
relative DOM efficiency, lateral [o] 0.0+£1.0 0.2 0.2
relative DOM efficiency, head-on [a.u.] no prior -0.72  -0.66
Background
Atm. p contamination [% of sample] no prior 5.5 5.6
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Sample of events used for this analysis
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v, disappearance oscillation analysis

Track-like

By, CC

@ Hatm
AvNC pggo

uncor

(3]

[km/GeV])

eco

Ca§cade—1§ke

10g19( Lreco/ Pre

2000

[=3
(=3
sl
=
S

QAT JO IoquInN

11 359 03 onyey

@ Fitting to data done in 3D space (E, cos ¢, PID) — projected onto L/E for illustration
» x2/ndf = 117.4/119

@ Analysis done with events with Ee¢, € [5.6,56] GeV
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v, disappearance oscillation analysis

T T T

L L I I

I IceCube Preliminary

T T } U
= IC2017[NO] oo SK 1V 2015 [NO]
MINOS w/atm [NO] =+ NOwA 2017 [NO]
== T2K 2017 [NO] = IC 2015 [NO]

90% CL contours

FC68%
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0.3 0.4 0.5 0.6 0.70

sin’ (093)

1
Ay’

@ Result consistent with other
experiments.

@ Using data from 3 years of
detector operations.
@ This measurement is still
statistics limited!
» Will need at least 6 years of
data to become statistically
limited.

Am2, =2.311311 x 1073 eV?

Sin® fp3 = 0.51739¢
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Summary

@ IceCube-DeepCore detector: good instrument to measure neutrino oscillations

@ Many updates to the v, disappearance analysis since 2014:

» New reconstruction being used
» All types of v’s and whole sky

@ Latest 6,3 and Am3, measurement of similar precision to those from accelerators
» Preference to maximal mixing like T2K

@ Many more topics using this same event selection are currently underway
» v, appearance

Sterile v searches

NSI

WIMP searches

vV vyVvVYyy
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Neutrino Mass Ordering
Nirmal Ordering (NO)

'm% —— IS 1o

@ Neutrino mass ordering: sign of Am§2
@ No effects visible in vacuum oscillations

Inverted Ordering (10)

V9

41

|AmS, |

@ Matter effects induce different changes for NO and 10
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Measuring Neutrinos: Neutrino interaction with matter
Charged Current CC interaction :

—

Neutral Current (NC) interaction :

v

@ Measure of produced lepton (/) — define v flavor

@ Measure recoil of nucleus or hadronization in some detectors

@ Further classification of interaction depends on what happens in nucleus
nuclear recoil [QE] «+——— [DIS] large hadronization
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Atmospheric neutrinos oscillations

e
// ; _VX: Vp
7=V« V¢

A m2, = 7.59e-05 eV?
A mZ, = +2.42e-03 eV?
: sin’(26,,) = 0.861

gk Sin’(28,5) = 0.098
N AN e

02%\1 /t\ / . 6CP:O°_NH

ggg ‘\/ L = | IH

2
10 10 true E, (GeV)

@ Largest baseline (L=12760 km, cosf; = —1) has:
» First oscillation maxima at ~ 25 GeV
» Matter effects below ~ 12 GeV
» Potential for v, appearance at 8 GeV
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Atmospheric neutrinos oscillations
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@ Largest baseline (L=12760 km, cos 8, = —1) has:
» First oscillation maxima at ~ 25 GeV
» Ocp below ~ 12 GeV
* but matter effects dominate that region
» Potential for v, appearance at 8 GeV
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Neutrinos Anti-Neutrinos
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Inverted ordering (I0)
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Low-energy reconstructions: resolutions
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Comparison to 10 (NO FC!)
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Containment Cut
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Background Cut

lceCube-86 (78+8) mterstnng (surfpce) distances
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