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A Curiosity List:
Is there any physics beyond the standard model?

What sets the strength of the weak force? Is it fine-tuned?

Is the world supersymmetric?

Is there a Higgs boson?

What is Dark Matter?

Is there a dark sector? Dark Forces?

What is Dark Energy?

Can the Cosmological constant be natural or is it tuned?

Are we part of a Universe or a Multiverse?

What’s with the 3 families of fermions?

What sets the size of particle masses?

Why is there more matter than anti-matter?

Are neutrinos their own anti-particles?

Are there sterile Neutrinos?

Do neutrinos interact in a non standard way?

Where is CP violated? neutrinos? 

Why doesn’t the strong force violate CP? 

How many space-time dimensions do we live in?

Do the forces unify? 

......

(Partial! In no 
particular order.)
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Searches for 
Flavor Violation
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Flavor Violation
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CLFV in the SM
For the record, the branching ration is:

Bad news: we will never observe this.

Good news: we will never observe this.          
No backgrounds* in the search for BSM!

BR(µ ! e�)SM ⇠ 3↵

32⇡

✓
�m2

⌫

m2
W

◆2

⇠ 10�54

*Except for the difficult experimental BG’s 
which I am not qualified to talk about.
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Higgs couplings to µe
Higgs coupling to µe is constrained, e.g. by:
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Figure 12: The two loop diagrams contributing to ⌧ ! µ�.
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The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are
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with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z, zWZ ⌘ m2

W/m2

Z and the loop
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mu to e gamma &  mu to 3e  (at  1 and 2-loop):
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

S

M

= mµ/v,
�

Y⌧⌧

�

S

M

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e

↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop

7
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Figure 5: Diagrams contributing to µ ! e conversion in nuclei via the flavor violating HiggsYukawa couplings Yµe and Yeµ.
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The experimental constraint �10⇥ 10�2

0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into therather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.
A similar diagram with electrons instead of muons on the external legs also contributes tothe electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�2

6e cm [29] translatesinto |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8for a muon running in the loop.

F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion ofthe FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises alreadyat tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-butions arise at one loop level. We give complete expressions for the tree level and one loopcontributions in Appendix A 3. There are also two-loop contributions, similar to the ones

13

mu to e conversion (will improve 4 orders of  magni tude !!!):
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0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into therather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.
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F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion ofthe FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises alreadyat tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-butions arise at one loop level. We give complete expressions for the tree level and one loopcontributions in Appendix A 3. There are also two-loop contributions, similar to the ones

13

mu to e conversion (will improve 4 orders of  magni tude !!!):

Which operator?
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Higgs couplings to µe
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Supersymmetry
Flavor violation processes:
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FIG. 8: Example contributions to the µ ! e� amplitude. Left: flav
or enhanced bino contribution.

Middle and right: wino-higgsi
no contributions.

In mini-split SUSY, the most important contributions to the µ ! e� amplitude arise

from bino and wino loops [76–78]. Higgs mediated contributions to µ ! e� can be very

important in TeV scale SUSY with large tan � [79], but are negligible in mini-split SUSY.

The dominant bino contribution arises at second order in mass insertions, O(�R�L), and
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ons linear in the mass insertions. The
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The expressions hold in the limit |m
B̃

| ⌧ m ˜̀. The bino contributions (16), (17) grow

linearly with |µ| tan � and are thus important for large values of |µ| tan �. They are also

proportional to the bino mass |m
B̃

|, which in mini-split SUSY is much smaller than the

slepton mass, roughly by a loop factor. E↵ectively, the above contribution is thus of two

loop size, compared to the case where all
mass parameters are at the sa

me scale (as in TeV

scale SUSY).

Wino loops can only contribute to AL and are necessarily proportional to the muon mass.

Compared to the bino contributions (16)
, (17) they arise at linear order in

mass insertion,

O(�L), are not suppressed by a small gaugino mass and are typically dominant for small

|µ|. The general form of the wino contributions to leading order in the mass insertion
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FIG. 10: Example contributions to the amplitude of µ ! e transition in nuclei. Left: wino boxcontribution. Middle: Z penguin contribution. Right: photon penguin contribution.

not contribute to Cq
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. For the contributions to Cq
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we find in the limit |m
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| ⌧ m˜̀,m˜qand to first order in the mass insertions
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with the loop function

f(x) =
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x log x
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, so that f(1) =
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16
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8
. (25)

The wino boxes decouple if either the squark mass m˜q or slepton mass m˜̀ become large.They do not contain large logs, are largely independent of the gaugino masses and alsoindependent of the µ parameter.
The photon penguins are also dominated by wino loops, see Fig. 10 (right), which generateonly the left-handed coe�cients Cq
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The ratio between the photon penguin contributions to Cu

L

V

and Cd

L

V

is set by the quarkcharges. Note that the photon penguin is enhanced by a large logarithm, log(|m
W̃

|2/m2
˜̀),which arises from diagrams where the photon couples to the light charged wino (as in theright diagram of Fig. 10).

Finally, Z penguins arise dominantly from diagrams that involve higgsino-wino mixing.The general form of the Z penguin contributions to Cq
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Muon g-2: Review of Theory and Experiment 5

time since the Kusch and Foley paper, many improvements have been made in the

precision of the electron anomaly[19]. Most recently ae has been measured to a relative

precision of 0.65 ppb (parts per billion)[20], a factor of 6 improvement over the famous

experiments at the University of Washington[21].

(a) (b) (c)

−
e

+
e

µ∗ µ∗

γ

µ
γ γ

µ∗ µ∗
γ

γ

SchwingerDirac

µ

γ

µ

Figure 1. The Feynman graphs for: (a) g = 2; (b) the lowest-order radiative correction
first calculated by Schwinger; and (c) the vacuum polarization contribution, which is
an example of the next-order term. The * emphasizes that in the loop the muon is
off-shell.

The ability to calculate loop diagrams such as those shown in Figure 1 (b) and (c)

is intimately tied to the renormalizability of the theory, which provides a prescription

to deal with the infinities encountered in calculating radiative corrections, and was

important to the development of quantum electrodynamics. In his original paper

Schwinger[16] described a new procedure that transformed the Dirac Hamiltonian to
include the electron self-energy which arises from the emission and absorption of virtual

photons. By doing so, he eliminated the divergences encountered in calculating the

lowest-order radiative correction. He pointed to three important features of his new

Hamiltonian: “it involves the experimental electron mass” (known today as the ‘dressed

or physical mass’); “an electron now interacts with the radiation field only in the presence

of an external field;” (i.e. the virtual photons from the self-energy are absent) and “the
interaction energy of an electron with an external field is now subject to a finite radiative

correction”[16]. This concept of renormalization also played an important role in the

development of the Standard Model, and the lowest-order contribution from virtual W

and Z gauge bosons to aµ was calculated very soon after the electroweak theory was

shown to be renormalizable[22].

The diagram in Figure 1(a) corresponds to g = 2, and the first-order (Schwinger)
correction which dominates the anomaly is given in diagram 1(b). More generally,

the Standard-Model value of the electron, muon or tauon anomaly, a(SM), arises from

loops (radiative corrections) containing virtual leptons, hadrons and gauge bosons. By

convention, these contributions are divided into three classes: the dominant QED terms,

like Schwinger’s correction, which contain only leptons and photons; terms which involve

hadrons, particularly the hadronic vacuum polarization correction to the Schwinger
term; and electroweak terms, which contain the Higgs, W and Z. Some of the terms

are identical for all three leptons, but as noted below, there are mass-dependent terms

which are significant for the muon and tauon but not for the electron. As a result, the

muon anomaly is slightly larger than that of the electron.
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first calculated by Schwinger; and (c) the vacuum polarization contribution, which is
an example of the next-order term. The * emphasizes that in the loop the muon is
off-shell.

The ability to calculate loop diagrams such as those shown in Figure 1 (b) and (c)

is intimately tied to the renormalizability of the theory, which provides a prescription

to deal with the infinities encountered in calculating radiative corrections, and was

important to the development of quantum electrodynamics. In his original paper

Schwinger[16] described a new procedure that transformed the Dirac Hamiltonian to
include the electron self-energy which arises from the emission and absorption of virtual

photons. By doing so, he eliminated the divergences encountered in calculating the

lowest-order radiative correction. He pointed to three important features of his new

Hamiltonian: “it involves the experimental electron mass” (known today as the ‘dressed

or physical mass’); “an electron now interacts with the radiation field only in the presence

of an external field;” (i.e. the virtual photons from the self-energy are absent) and “the
interaction energy of an electron with an external field is now subject to a finite radiative

correction”[16]. This concept of renormalization also played an important role in the

development of the Standard Model, and the lowest-order contribution from virtual W

and Z gauge bosons to aµ was calculated very soon after the electroweak theory was

shown to be renormalizable[22].

The diagram in Figure 1(a) corresponds to g = 2, and the first-order (Schwinger)
correction which dominates the anomaly is given in diagram 1(b). More generally,

the Standard-Model value of the electron, muon or tauon anomaly, a(SM), arises from

loops (radiative corrections) containing virtual leptons, hadrons and gauge bosons. By

convention, these contributions are divided into three classes: the dominant QED terms,

like Schwinger’s correction, which contain only leptons and photons; terms which involve

hadrons, particularly the hadronic vacuum polarization correction to the Schwinger
term; and electroweak terms, which contain the Higgs, W and Z. Some of the terms

are identical for all three leptons, but as noted below, there are mass-dependent terms

which are significant for the muon and tauon but not for the electron. As a result, the

muon anomaly is slightly larger than that of the electron.

S
ta

n
d
a
rd

 M
o
d
e
l:
 V

. 
E

x
p
e
ri
m

e
n
ta

l 
T

e
s
ts

 o
f 
Q

E
D

J
. 

P
a

w
lo

w
s
k
i 
/ 

U
. 

U
w

e
r

3
3

4
. 

A
n

o
m

a
lo

u
s
 m

a
g

n
e

ti
c
 m

o
m

e
n

t

M
a

g
n

e
ti

c
 m

o
m

e
n

t

!

s
g

B

!
!

"
"

#
$

%
%

s
B

!
!

"
"

!
#

$
%

&'
%

)
2

(

&'

&'

2
2

2

2

$
#

$

!
$

g
ag

2
$

g
2

$
g

&'
!

1
s
t
o

rd
e
r:

3
4

H
ig

h
e

r 
o

rd
e

r 
c
o

rr
e

c
ti
o

n
s
 t

o
 g

-2

R
a

d
ia

ti
v
e

c
o
rr

e
c
ti
o

n
s
 g

-2
 a

re
 

c
a

lc
u

la
te

d
 t
o

 t
h

e
 4

-l
o

o
p
 l
e

v
e

l:

9
7
1

ti
l
O

('
4
)

8
9
1

O
('

4
)

7
2

O
('

3
)

7
O

('
2
)

1
O

('
)F
e

y
n

m
a

n
 G

ra
p

h
s

M
o

s
t 

p
re

c
is

e
 Q

E
D

 p
re

d
ic

ti
o

n
.

T
. 

K
in

o
s
h
it
a

 e
t 

a
l.

a
n

a
ly

ti
c
a
lly

n
u

m
e
ri
c
a
lly

S
ta

n
d

a
rd

 M
o

d
e

l:
 V

. 
E

x
p

e
ri
m

e
n

ta
l 
T

e
s
ts

 o
f 

Q
E

D

J
. 

P
a

w
lo

w
s
k
i 
/ 

U
. 

U
w

e
r

3
3

4
. 

A
n

o
m

a
lo

u
s
 m

a
g

n
e

ti
c
 m

o
m

e
n

t

M
a

g
n

e
ti

c
 m

o
m

e
n

t

!

s
g

B

!
!

"
"

#
$

%
%

s
B

!
!

"
"

!
#

$
%

&'
%

)
2

(

&'

&'

2
2

2

2

$
#

$

!
$

g
ag

2
$

g
2

$
g

&'
!

1
s
t
o

rd
e
r:

3
4

H
ig

h
e

r 
o

rd
e

r 
c
o

rr
e

c
ti
o

n
s
 t

o
 g

-2

R
a

d
ia

ti
v
e

c
o
rr

e
c
ti
o

n
s
 g

-2
 a

re
 

c
a

lc
u

la
te

d
 t
o

 t
h

e
 4

-l
o

o
p
 l
e

v
e

l:

9
7

1
ti
l
O

('
4
)

8
9

1
O

('
4
)

7
2

O
('

3
)

7
O

('
2
)

1
O

('
)F
e

y
n

m
a

n
 G

ra
p

h
s

M
o

s
t 

p
re

c
is

e
 Q

E
D

 p
re

d
ic

ti
o

n
.

T
. 

K
in

o
s
h

it
a

 e
t 

a
l.

a
n

a
ly

ti
c
a

lly

n
u

m
e

ri
c
a

lly

A
no

m
a
lo
us

 M
a
gn

e
ti
c 

M
om

e
nt

C
or

re
ct

io
ns

 a
re

 n
ow

ad
ay

s 
ca

lc
ul

at
ed

 t
o 

4
-l

oo
p 

le
ve

l

R
ad

ia
ti

ve
 

co
rr

ec
ti

on
s 

to
 g

-2

M
os

t 
pr

ec
is

e 
ca

lc
ul

at
io

ns
:

T
. K

in
os

h
it

a 
et

 a
l. 

O
(α

3
)

d
ia

gr
am

s

26



Muon g-2: Review of Theory and Experiment 5

time since the Kusch and Foley paper, many improvements have been made in the

precision of the electron anomaly[19]. Most recently ae has been measured to a relative

precision of 0.65 ppb (parts per billion)[20], a factor of 6 improvement over the famous

experiments at the University of Washington[21].
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Figure 1. The Feynman graphs for: (a) g = 2; (b) the lowest-order radiative correction
first calculated by Schwinger; and (c) the vacuum polarization contribution, which is
an example of the next-order term. The * emphasizes that in the loop the muon is
off-shell.

The ability to calculate loop diagrams such as those shown in Figure 1 (b) and (c)

is intimately tied to the renormalizability of the theory, which provides a prescription

to deal with the infinities encountered in calculating radiative corrections, and was

important to the development of quantum electrodynamics. In his original paper

Schwinger[16] described a new procedure that transformed the Dirac Hamiltonian to
include the electron self-energy which arises from the emission and absorption of virtual

photons. By doing so, he eliminated the divergences encountered in calculating the

lowest-order radiative correction. He pointed to three important features of his new

Hamiltonian: “it involves the experimental electron mass” (known today as the ‘dressed

or physical mass’); “an electron now interacts with the radiation field only in the presence

of an external field;” (i.e. the virtual photons from the self-energy are absent) and “the
interaction energy of an electron with an external field is now subject to a finite radiative

correction”[16]. This concept of renormalization also played an important role in the

development of the Standard Model, and the lowest-order contribution from virtual W

and Z gauge bosons to aµ was calculated very soon after the electroweak theory was

shown to be renormalizable[22].

The diagram in Figure 1(a) corresponds to g = 2, and the first-order (Schwinger)
correction which dominates the anomaly is given in diagram 1(b). More generally,

the Standard-Model value of the electron, muon or tauon anomaly, a(SM), arises from

loops (radiative corrections) containing virtual leptons, hadrons and gauge bosons. By

convention, these contributions are divided into three classes: the dominant QED terms,

like Schwinger’s correction, which contain only leptons and photons; terms which involve

hadrons, particularly the hadronic vacuum polarization correction to the Schwinger
term; and electroweak terms, which contain the Higgs, W and Z. Some of the terms

are identical for all three leptons, but as noted below, there are mass-dependent terms

which are significant for the muon and tauon but not for the electron. As a result, the

muon anomaly is slightly larger than that of the electron.
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Electron (g-2)-Measurement
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Figure 2: Compilation of recent published re-
sults for aµ (in units of 10−11), subtracted
by the central value of the experimental av-
erage (3). The shaded band indicates the size
of the experimental uncertainty. The SM pre-
dictions are taken from: JN [4], DHMZ [17],
HMNT [21]. Note that the quoted errors in
the figure do not include the uncertainty on the
subtracted experimental value. To obtain for
each theory calculation a result equivalent to
Eq. (15), the errors from theory and experiment
must be added in quadrature.

(with all errors combined in quadrature) represents an inter-

esting but not yet conclusive discrepancy of 3.6 times the

estimated 1σ error. All the recent estimates for the hadronic

contribution compiled in Fig. 2 exhibit similar discrepancies.

Switching to τ data reduces the discrepancy to 2.4σ, assuming

the isospin-violating corrections are under control within the

estimated uncertainties (see Ref. 32 for an analysis leading to a

different conclusion).

An alternate interpretation is that ∆aµ may be a new

physics signal with supersymmetric particle loops as the leading

candidate explanation. Such a scenario is quite natural, since

December 18, 2013 11:57
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Figure 1: Representative diagrams contribut-
ing to aSM

µ . From left to right: first order QED
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of the measurement in Eq. (3) by a factor of four by moving the

E821 storage ring to Fermilab, and utilizing a cleaner and more

intense muon beam is in progress. An even more ambitious

precision goal is set by an experiment based on a beam of

ultra-cold muons proposed at the Japan Proton Accelerator

Research Complex.

The SM prediction for aSM
µ is generally divided into three

parts (see Fig. 1 for representative Feynman diagrams)

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (4)

The QED part includes all photonic and leptonic (e, µ, τ) loops

starting with the classic α/2π Schwinger contribution. It has

been computed through 5 loops [9]

aQED
µ =

α

2π
+ 0.765 857 425(17)

(α

π

)2
+ 24.050 509 96(32)

(α

π

)3

+ 130.879 6(6 3)
(α

π

)4
+ 753.3(1.0)

(α

π

)5
+ · · · (5)

with a few significant changes in the coefficients since our

previous update of this review in 2011. Employing2 α−1 =

137.035 999 049(90), obtained [6] from the precise measure-

ments of h/mRb [11], the Rydberg constant and mRb/me [6],

leads to [9]

aQED
µ = 116 584 718.95(0.08)× 10−11 , (6)

2 In the previous versions of this review we used the precise

α value determined from the electron ae measurement [9,10].

With the new measurement [11] of the recoil velocity of Rubid-

ium, h/mRb, an ae-independent determination of α with suffi-

cient precision is available and preferred.
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Can We violate this?
Can we have FV Higgs couplings?

times larger than in the SM can arise in many models of flavor (for instance in models with

continuous and/or discrete flavor symmetries [24], or in Randall-Sundrum models [25]) as

long as there is new physics at the electroweak scale and not just the SM. The lepton flavor

violating decay h ! ⌧µ has been studied in [11], and it was found that the branching ratio

for this decay can be up to 10% in certain Two Higgs Doublet Models (2HDMs).

In fact, there may already be experimental hints that the Higgs couplings to fermions

may not be SM-like. For instance, the BaBar collaboration recently announced a 3.4�

indication of flavor universality violation in b ! c⌧⌫ transitions [26], which can be explained

for instance by an extended Higgs sector with nontrivial flavor structure [27].

The paper is organized as follows. In Sec. II we introduce the theoretical framework we

will use to parameterize the flavor violating decays of the Higgs. In Sec. III we derive bounds

on flavor violating Higgs couplings to leptons and translate these bounds into limits on the

Higgs decay branching fractions to the various flavor violating final states. In Sec. IV we

do the same for flavor violating couplings to quarks. We shall see that decays of the Higgs

to ⌧µ and to ⌧e with sizeable branching fractions are allowed, and that also flavor violating

couplings of the Higgs to top quarks are only weakly constrained. Motivated by this we

turn to the LHC in Section V and estimate the current bounds on Higgs decays to ⌧µ and

⌧e using data from an existing h ! ⌧⌧ search. We also discuss a strategy for a dedicated

h ! ⌧µ search and comment on di↵erences with the SM h ! ⌧⌧ searches. We will see

that the LHC can make significant further progress in probing the Higgs’ flavor violating

parameters space with existing data. We conclude in Section VI. In the appendices, we give

more details on the calculation of constraints from low-energy observables.

II. THE FRAMEWORK

After electroweak symmetry breaking (EWSB) the fermionic mass terms and the cou-

plings of the Higgs boson to fermion pairs in the mass basis are in general

LY = �mif̄
i
Lf

i
R � Yij(f̄

i
Lf

j
R)h+ h.c.+ · · · , (1)

where ellipses denote nonrenormalizable couplings involving more than one Higgs field oper-

ator. In our notation, fL = qL, `L are SU(2)L doublets, fR = uR, dR, ⌫R, `R the weak singlets,

and indices run over generations and fermion flavors (quarks and leptons) with summation

3

In the mass basis, could we have

?
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over the place.

3. Re-diagonalize mass 
matrix.
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Flavor Violating Higgs 
Writing it a bit more neatly, we get: 

implicitly understood. In the SM the Higgs couplings are diagonal, Yij = (mi/v)�ij, but

in general NP models the structure of the Yij can be very di↵erent. Note that we use the

normalization v = 246 GeV here. The goal of the paper is to set bounds on Yij and identify

interesting channels for Higgs decays at the LHC. Throughout we will assume that the Higgs

is the only additional degree of freedom with mass O(100 GeV) and that the Yij’s are the

only source of flavor violation. These assumptions are not necessarily valid in general, but

will be a good approximation in many important classes of new physics frameworks. Let

us now show how Yij 6= (mi/v)�ij can arise in two qualitatively di↵erent categories of NP

models.

a. A single Higgs theory. Let us first explore the possibility that the Higgs is the only

field that causes EWSB. For simplicity let us also assume that at energies below ⇠ 200 GeV

the spectrum consists solely of the SM particles: three generations of quarks and leptons,

the SM gauge bosons and the Higgs at 125 GeV. Additional heavy fields (e.g. scalar or

fermionic partners which address the hierarchy problem) can be integrated out, so that we

can work in e↵ective field theory (EFT)—the e↵ective Standard Model. In addition to the

SM Lagrangian

LSM = f̄ j
Li /Df j

L + f̄ j
Ri /Df j

R �
⇥

�ij(f̄
i
Lf

j
R)H + h.c.

⇤

+DµH
†DµH � �H

⇣

H†H � v2

2

⌘

2

, (2)

there are then also higher dimensional terms due to the heavy degrees of freedom that were

integrated out:

�LY = ��0
ij

⇤2

(f̄ i
Lf

j
R)H(H†H) + h.c.+ · · · , (3)

Here we have written out explicitly only the terms that modify the Yukawa interactions.

We can truncate the expansion after the terms of dimension 6, since these already su�ce to

completely decouple the values of the fermion masses from the values of fermion couplings

to the Higgs boson (see also [15]). Additional dimension 6 operators involving derivatives

include

�LD =
�ij
L

⇤2

(f̄ i
L�

µf j
L)(H

†i
 !
DµH) +

�ij
R

⇤2

(f̄ i
R�

µf j
R)(H

†i
 !
DµH) + · · · , (4)

where (H†i
 !
DµH) ⌘ H†iDµH � (iDµH†)H. The couplings �0

ij are complex in general,

while the �ij
L,R are real. The derivative couplings do not give rise to fermion-fermion-Higgs

couplings after EWSB and are irrelevant for our analysis. In Eq. (4) there are in principle

4
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models.

a. A single Higgs theory. Let us first explore the possibility that the Higgs is the only

field that causes EWSB. For simplicity let us also assume that at energies below ⇠ 200 GeV

the spectrum consists solely of the SM particles: three generations of quarks and leptons,

the SM gauge bosons and the Higgs at 125 GeV. Additional heavy fields (e.g. scalar or

fermionic partners which address the hierarchy problem) can be integrated out, so that we

can work in e↵ective field theory (EFT)—the e↵ective Standard Model. In addition to the

SM Lagrangian

LSM = f̄ j
Li /Df j

L + f̄ j
Ri /Df j

R �
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�ij(f̄
i
Lf

j
R)H + h.c.

⇤

+DµH
†DµH � �H

⇣

H†H � v2

2

⌘

2

, (2)

there are then also higher dimensional terms due to the heavy degrees of freedom that were

integrated out:

�LY = ��0
ij

⇤2

(f̄ i
Lf

j
R)H(H†H) + h.c.+ · · · , (3)

Here we have written out explicitly only the terms that modify the Yukawa interactions.

We can truncate the expansion after the terms of dimension 6, since these already su�ce to

completely decouple the values of the fermion masses from the values of fermion couplings

to the Higgs boson (see also [15]). Additional dimension 6 operators involving derivatives

include
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 !
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�ij
R
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(f̄ i
R�

µf j
R)(H

†i
 !
DµH) + · · · , (4)

where (H†i
 !
DµH) ⌘ H†iDµH � (iDµH†)H. The couplings �0

ij are complex in general,

while the �ij
L,R are real. The derivative couplings do not give rise to fermion-fermion-Higgs

couplings after EWSB and are irrelevant for our analysis. In Eq. (4) there are in principle
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also terms of the form (f̄ i
L,Ri /Df j

L.R)H
†H, which, however, can be shown to be equivalent to

(3) by using equations of motion.

After electroweak symmetry breaking (EWSB) and diagonalization of the mass matrices,

one obtains the Yukawa Lagrangian in Eq. (1), with

p
2m = VL



�+
v2

2⇤2

�0
�

V †
R v ,

p
2Y = VL



�+ 3
v2

2⇤2

�0
�

V †
R , (5)

where the unitary matrices VL, VR are those which diagonalize the mass matrix, and v =

246 GeV. In the mass basis we can write

Yij =
mi

v
�ij +

v2p
2⇤2

�̂ij , (6)

where �̂ = VL�0VR. In the limit ⇤ ! 1 one obtains the SM, where the Yukawa matrix Y is

diagonal, Y v = m. For ⇤ of the order of the electroweak scale, on the other hand, the mass

matrix and the couplings of the Higgs to fermions can be very di↵erent as �̂ is in principle

an arbitrary non-diagonal matrix.

Taking the o↵ diagonal Yukawa couplings nonzero can come with a theoretical price.

Consider, for instance, a two flavor mass matrix involving ⌧ and µ. If the o↵-diagonal entries

are very large the mass spectrum is generically not hierarchical. A hierarchical spectrum

would require a delicate cancellation among the various terms in Eq. (5). Tuning is avoided

if [28]

|Y⌧µYµ⌧ | . mµm⌧

v2
, (7)

with similar conditions for the other o↵ diagonal elements. Even though we will keep this

condition in the back of our minds, we will not restrict the parameter space to fulfill it.

b. Models with several sources of EWSB: Let us now discuss the case where the Higgs

at 125 GeV is not the only scalar that breaks electroweak symmetry. The modification of

the above discussion is straightforward. The additional sources of EWSB are assumed to

be heavy and can thus still be integrated out. Their EWSB e↵ects can be described by a

spurion � that formally transforms under electroweak global symmetry and then obtains

a vacuum expectation value (vev), which breaks the electroweak symmetry. If � has the

quantum numbers (2, 1/2) under SU(2)L ⇥ U(1)Y it can contribute to quark and lepton

masses.2 This allows the Yukawa interactions Y of the 125 GeV Higgs to be misaligned with

2 A spurion which transforms as a triplet can also contribute to Majorana masses for neutrinos.
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“Natural” FV
FV that’s too large comes at a tuning price:

Requiring no cancelation in the determinant
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(same for any pair of fermions)

In an era of data, considerations of fine 
tuning are not of huge importance...

But we’ll keep it in the back of our mind.
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Leptonic Flavor Violation

respect to the fermion mass matrix m in Eq. (1).

The simplest example for a full theory of this class is a type III two Higgs doublet model

(2HDM) where both Higgses obtain a vev and couple to fermions. In the full theory both

of the scalars then have a Lagrangian of the form (1)

LY = �mif̄
i
Lf

i
R � Y a

ij(f̄
i
Lf

j
R)h

a + h.c.+ · · · , (8)

where the index a runs over all the scalars (with Y a
ij imaginary for pseudoscalars), and mi

receives contributions from both vevs. In addition there is also a scalar potential which

mixes the two Higgses. Diagonalizing the Higgs mass matrix then also changes Y a
ij , but

removes the Higgs mixing. For our purposes it is simplest to work in the Higgs mass basis.

All the results for a single Higgs are then trivially modified, replacing our final expressions

below by a sum over several Higgses. For a large mass gap, where only one Higgs is light, the

contributions from the heavier Higgs are power suppressed, unless its flavor violating Yukawa

couplings are parametrically larger than those of the light Higgs. The contributions from

the heavy Higgs correspond to the higher dimensional operators discussed in the previous

paragraph. This example can be trivially generalized to models with many Higgs doublets.

We next derive constraints on flavor violating Higgs couplings and work out the allowed

branching fractions for flavor violation Higgs decays. In placing the bounds we will neglect

the FV contributions of the remaining states in the full theory. Our bounds thus apply

barring cancellations with these other terms.

III. LEPTONIC FLAVOR VIOLATING HIGGS DECAYS

The FV decays h ! eµ, e⌧, µ⌧ arise at tree level from the assumed flavor violating Yukawa

interactions, Eq. (1), where the relevant terms are explicitly

LY �� YeµēLµRh� Yµeµ̄LeRh� Ye⌧ ēL⌧Rh� Y⌧e⌧̄LeRh� Yµ⌧ µ̄L⌧Rh� Y⌧µ⌧̄LµRh+ h.c. .

(9)

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

6

Which experiments constrain the Yij’s?
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Higgs couplings to µe
Higgs coupling to µe is constrained, e.g. by:

µ

h �, Z

tt

⌧

�

µ
µ

h �, Z

WW

⌧

�

µ

µ

h �, Z

W W

⌧

�

µ

µ

h

µ

Z

µ

⌧

�

µ

Figure 12: The two loop diagrams contributing to ⌧ ! µ�.
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the arguments are zth = m2

t/m
2

H , zWh = m2

W/m2

H , while the prefactor is

 =
↵

16⇡

g2

m2

W

v

m⌧

=
↵

2
p
2⇡

GF

v

m⌧

. (A9)

The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are

�ctZL = �6Qt
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2

W )

16s2W c2W
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with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z, zWZ ⌘ m2

W/m2

Z and the loop
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

S

M

= mµ/v,
�

Y⌧⌧

�

S

M

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e

↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop

7

µµ

µ µe e
e

e

e

38



Higgs couplings to µe
Higgs coupling to µe is constrained, e.g. by:

µ

h �, Z

tt

⌧

�

µ
µ

h �, Z

WW

⌧

�

µ

µ

h �, Z

W W

⌧

�

µ

µ

h

µ

Z

µ

⌧

�

µ

Figure 12: The two loop diagrams contributing to ⌧ ! µ�.

g(z) =
1

2
z

Z

1

0

dx
1

x(1� x)� z
log

x(1� x)

z
,

(A7)

h(z) = z2
@

@z

⇣g(z)

z

⌘

=
z

2

Z

1

0

dx

z � x(1� x)

h

1 +
z

z � x(1� x)
log

x(1� x)

z

i

, (A8)

the arguments are zth = m2

t/m
2

H , zWh = m2

W/m2

H , while the prefactor is

 =
↵

16⇡

g2

m2

W

v

m⌧

=
↵

2
p
2⇡

GF

v

m⌧

. (A9)
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

S

M

= mµ/v,
�

Y⌧⌧

�

S

M

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by
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= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are
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F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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Figure 5: Diagrams contributing to µ ! e conversion in nuclei via the flavor violating HiggsYukawa couplings Yµe and Yeµ.

e↵ective Lagrangian is
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with the electric dipole moment given by (neglecting the terms suppressed by mµ/m⌧ orm⌧/mh)
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The experimental constraint �10⇥ 10�2

0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into therather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.
A similar diagram with electrons instead of muons on the external legs also contributes tothe electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�2

6e cm [29] translatesinto |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8for a muon running in the loop.

F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion ofthe FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises alreadyat tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-butions arise at one loop level. We give complete expressions for the tree level and one loopcontributions in Appendix A 3. There are also two-loop contributions, similar to the ones

13

mu to e conversion (will improve 4 orders of  magni tude !!!):
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with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
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= mµ/v,
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Y⌧⌧
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= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e

↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
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8⇡2
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µ̄ �↵�PL,R⌧
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F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The experimental constraint �10⇥ 10�2

0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into therather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.
A similar diagram with electrons instead of muons on the external legs also contributes tothe electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�2

6e cm [29] translatesinto |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8for a muon running in the loop.

F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion ofthe FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises alreadyat tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-butions arise at one loop level. We give complete expressions for the tree level and one loopcontributions in Appendix A 3. There are also two-loop contributions, similar to the ones
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mu to e conversion (will improve 4 orders of  magni tude !!!):
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with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
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Yµµ
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= mµ/v,
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Y⌧⌧
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= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
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= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are
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µ̄ �↵�PL,R⌧
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F↵� , (12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,
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bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�
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with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson
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(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
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= mµ/v,
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Y⌧⌧

�

SM

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by
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= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
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µ̄ �↵�PL,R⌧
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F↵� , (12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid
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A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�
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some of the approximations made by previous authors. We also consider some constraining
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A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�
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µ̄ �↵�PL,R⌧
�
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with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
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Y⌧⌧

�

SM
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bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by
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where the dim-5 electromagnetic penguin operators are
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with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
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bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

SM

= mµ/v,
�

Y⌧⌧

�

SM

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� , (12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ
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SM

= mµ/v,
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Y⌧⌧
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SM

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� , (12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

SM

= mµ/v,
�

Y⌧⌧

�

SM

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� , (12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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The real answer is (pages of algebra)-

Channel Coupling Bound

µ ! e�
p|Yµe|2 + |Yeµ|2 < 3.6⇥ 10�6

µ ! 3e
p|Yµe|2 + |Yeµ|2 . 3.1⇥ 10�5

electron g � 2 Re(YeµYµe) �0.019 . . . 0.026

electron EDM |Im(YeµYµe)| < 9.8⇥ 10�8

µ ! e conversion
p|Yµe|2 + |Yeµ|2 < 4.6⇥ 10�5

M -M̄ oscillations |Yµe + Y ⇤
eµ| < 0.079

⌧ ! e�
p|Y⌧e|2 + |Ye⌧ |2 < 0.014

⌧ ! 3e
p|Y⌧e|2 + |Ye⌧ |2 . 0.12

electron g � 2 Re(Ye⌧Y⌧e) [�2.1 . . . 2.9]⇥ 10�3

electron EDM |Im(Ye⌧Y⌧e)| < 1.1⇥ 10�8

⌧ ! µ�
p|Y⌧µ|2 + |Yµ⌧ |2 0.016

⌧ ! 3µ
q

|Y 2

⌧µ + |Yµ⌧ |2 . 0.25

muon g � 2 Re(Yµ⌧Y⌧µ) (2.7± 0.75)⇥ 10�3

muon EDM Im(Yµ⌧Y⌧µ) �0.8 . . . 1.0

µ ! e�
�|Y⌧µY⌧e|2 + |Yµ⌧Ye⌧ |2

�

1/4
< 3.4⇥ 10�4

Table I: Constraints on flavor violating Higgs couplings to e, µ, ⌧ for a Higgs mass mh = 125 GeV

and assuming that the flavor diagonal Yukawa couplings equal the SM values (see text for details).

For the muon magnetic dipole moment we show the value of the couplings required to explain the

observed �aµ (if this is used only as an upper bound one has
p

Re(Yµ⌧Y⌧µ) < 0.065 at 95%CL).

diagrams, see Fig. 12 in Appendix A. The complete one loop and two loop expressions are

given in Appendix A.

In the approximation Yµµ ⌧ Y⌧⌧ , only the first of the one-loop diagrams in Fig. 1 is

relevant (in addition to the 2-loop diagrams). Using also mµ ⌧ m⌧ ⌧ mh and assuming

Yµµ, Y⌧⌧ to be real, the expressions for the one-loop Wilson coe�cients cL and cR simplify

to (this agrees with [24])

c1loopL ' 1

12m2

h

Y⌧⌧Y
⇤
⌧µ

✓

� 4 + 3 log
m2

h

m2

⌧

◆

, c1loopR ' 1

12m2

h

Yµ⌧Y⌧⌧

✓

� 4 + 3 log
m2

h

m2

⌧

◆

. (13)

8

(swap tau with mu and mu with e)
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Figure 6: Constraints on the flavor violating Yukawa couplings |Ye⌧ |, |Y⌧e| (upper left panel), |Yeµ|,
|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [38, 43] is taken into account. The thin red dotted lines show

rough naturalness limits YijYji . mimj/v2 (see Sec. II).
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|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [38, 43] is taken into account. The thin red dotted lines show

rough naturalness limits YijYji . mimj/v2 (see Sec. II).
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|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [38, 43] is taken into account. The thin red dotted lines show

rough naturalness limits YijYji . mimj/v2 (see Sec. II).
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τe is similar to τµ.... but:

Electron EDM is 
interesting here!

h

µ+

e�

e+

µ�

Y ⇤
eµPL + YµePR

Y ⇤
eµPL + YµePR

Figure 3: Diagram leading to muonium–antimuonium oscillations.

⌧

h

⌧µ

�

µ
Y ⇤
µ⌧PL + Y⌧µPR Y ⇤

⌧µPL + Yµ⌧PR

Figure 4: A diagram contributing to the anomalous magnetic moment g � 2 of the muon through

FV couplings of the Higgs to ⌧µ.

where "X and #X are the spin orientations of particle X. We can work in the non-

relativistic limit here. For a contact interaction, the spatial wave function of muonium,

�
1s = exp(�r/aM)/[⇡a3M ]1/2 only needs to be evaluated at the origin. (Here r is the

electron–antimuon distance and aM = (me +mµ)/(memµ↵) is the muonium Bohr radius.)

The resulting mass splitting between the two mass eigenstates of the mixed M–M̄ system

is [34],

�M = 2 |M
¯MM | = |Yµe + Y ⇤

eµ|2
2⇡a3m2

h

, (19)

and the time-integrated conversion probability is

P (M ! M̄) =

Z 1

0

dt�µ sin2(�M t) e��µt =
2

�2

µ/(�M)2 + 4
. (20)

The bound from the MACS experiment [33] then translates into |Yµe + Y ⇤
eµ| < 0.079.

D. Constraints from magnetic dipole moments

The CP conserving and CP violating parts of the diagram in Fig. 4 generate magnetic

and electric dipole moments of the muon, respectively. Since the experimental value of the

11

electron EDM:

ee

Higgs couplings to τe
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Higgs Summary:

Leptons Probe

µ-e muons

τ-e eEDM*

τ-µ LHC

d-quarks Probe

s-d K-K

b-d B-B

b-s Bs-Bs

d-quarks Probe

c-u D-D

t-u nEDM*

t-c LHC / D-D

Phase Probe

e e-EDM

u,d nEDM

γ eEDM

Flavor violation:

*LHC, if CP is conserved.

CP violation:
Phase Probe

t EDMs

τ LHC / 
Higgs factory

Z LHC

Multiple probes 
across frontiers!

Almost all channels 
are sensitive at well 

motivated levels!

p

p

p

p

p

p

p

p

Yij .
p
mimj

v
p=sensitive at the level of               .

p?
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Split SUSY
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Split SUSY
SUSY has a “missing superpartner problem”.

Maybe SUSY addresses most, but not all of the tuning.

The Higgs mass provides a hint:
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Figure 5: Assuming the existence of supersymmetry we compute, as function of tan �, the

preferred value of the SUSY scale m̃ implied by the Higgs mass mh = 124GeV (upper) and

126GeV (lower) at 68, 90, 99% C.L. in the cases of High-Scale Supersymmetry (left, assuming

a degenerate sparticle spectrum at the SUSY breaking scale with arbitrary stop mixing) and Split

Supersymmetry (right, assuming the spectrum of light fermions in eq. (28) and a degenerate

sparticle spectrum at the SUSY breaking scale).
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Giudice, Strumia (2012)
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SUSY at such high 
scales is likely to include 
flavor and CP violation.

Giudice, Strumia (2012)
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SUSY at such high 
scales is likely to include 
flavor and CP violation.

Giudice, Strumia (2012)

Goal: try to reach 
O(PeV) with as many 
probes as possible.
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The Spectrum
Lepton superpatners at 100-1000 TeV.

Gauginos at a few TeV

Assume large FV at the high scale. 
Can we probe it?
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The Spectrum
Lepton superpatners at 100-1000 TeV.

Gauginos at a few TeV

Higgsinos can be either here or here.

Assume large FV at the high scale. 
Can we probe it?
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LFV form PeV Sleptons
Flavor violation processes:
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µ̃R ẽL
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FIG. 8: Example contributions to the µ ! e� amplitude. Left: flav
or enhanced bino contribution.

Middle and right: wino-higgsi
no contributions.

In mini-split SUSY, the most important contributions to the µ ! e� amplitude arise

from bino and wino loops [76–78]. Higgs mediated contributions to µ ! e� can be very

important in TeV scale SUSY with large tan � [79], but are negligible in mini-split SUSY.

The dominant bino contribution arises at second order in mass insertions, O(�R�L), and

involves mixing into the third generation which leads to an enhancement factor of m⌧

/m
µ

over the contributi
ons linear in the mass insertions. The

relevant Feynman diagram is shown

in Fig. 8 (left-most diagram) and gives

AL
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) .
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The expressions hold in the limit |m
B̃

| ⌧ m ˜̀. The bino contributions (16), (17) grow

linearly with |µ| tan � and are thus important for large values of |µ| tan �. They are also

proportional to the bino mass |m
B̃

|, which in mini-split SUSY is much smaller than the

slepton mass, roughly by a loop factor. E↵ectively, the above contribution is thus of two

loop size, compared to the case where all
mass parameters are at the sa

me scale (as in TeV

scale SUSY).

Wino loops can only contribute to AL and are necessarily proportional to the muon mass.

Compared to the bino contributions (16)
, (17) they arise at linear order in

mass insertion,

O(�L), are not suppressed by a small gaugino mass and are typically dominant for small

|µ|. The general form of the wino contributions to leading order in the mass insertion

approximation reads
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mu to e gamma:
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FIG. 10: Example contributions to the amplitude of µ ! e transition in nuclei. Left: wino boxcontribution. Middle: Z penguin contribution. Right: photon penguin contribution.

not contribute to Cq

R

V

. For the contributions to Cq

L

V

we find in the limit |m
W̃

| ⌧ m˜̀,m˜qand to first order in the mass insertions
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with the loop function

f(x) =
1

8(1� x)
+

x log x
8(1� x)2

, so that f(1) =
1

16
, f(0) =

1

8
. (25)

The wino boxes decouple if either the squark mass m˜q or slepton mass m˜̀ become large.They do not contain large logs, are largely independent of the gaugino masses and alsoindependent of the µ parameter.
The photon penguins are also dominated by wino loops, see Fig. 10 (right), which generateonly the left-handed coe�cients Cq
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The ratio between the photon penguin contributions to Cu

L

V

and Cd

L

V

is set by the quarkcharges. Note that the photon penguin is enhanced by a large logarithm, log(|m
W̃

|2/m2
˜̀),which arises from diagrams where the photon couples to the light charged wino (as in theright diagram of Fig. 10).

Finally, Z penguins arise dominantly from diagrams that involve higgsino-wino mixing.The general form of the Z penguin contributions to Cq

L

V

reads
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mu to e conversion and mu to 3e:
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LFV form PeV Sleptons
LFV is sensitive to sleptons 100’s of TeV!
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FIG. 9: Bounds from µ ! e� in the m˜̀ vs. |m
B̃

| = |m
W̃

| plane (top row) and the m˜̀ vs. tan�

plane (bottom row). The higgsino mass is at the scale of the slepton masses (left column) or at the

scale of the gaugino masses (right column). All relevant mass insertions are set to |�L
ij

| = |�R
ij

| = 0.3.

The dark (light) shaded regions are excluded at the 95% (90%) C.L. by the current measurement

assuming constructive interference between the respective dominant NP amplitudes. The white

dotted lines show the case of destructive interference. The dashed lines show the sensitivity of the

proposed MEG upgrade.
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FIG. 11: Predicted µ ! e conversion rates in Al in the m˜̀ vs. |m
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| = |m
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the m˜̀ vs. tan� plane (bottom row). The higgsino mass is set either equal to the slepton masses

(left column) or to the gaugino masses (right column). All relevant mass insertions are fixed to

|�L
ij

| = |�R
ij

| = 0.3. The dark (light) shaded regions show 95% (90%) C.L. exclusions by the current

limits on µ ! e conversion in Au, while the sensitivity of the planned Mu2e experiment is given

by the dashed lines.
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Other Probes
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FIG. 1: Summary of various low energy constraints (left of the lines are the excluded regions) in

the sfermion mass vs. tan� plane for the example of 3 TeV bino and wino and 10 TeV gluino,

while fixing the mass insertion parameters to be (�
A

)
ij

= 0.3 when using the super-CKM basis.

The dark (light) blue shaded band is the parameter space compatible with a Higgs mass of m
h

=

125.5±1 GeV within 1� (2�). The upper (lower) plot gives the reach of current (projected future)

experimental results collected in Tab. I.

electric dipole moments (EDMs). In this work we investigate the limits that these searches

place on flavor violation at the PeV scale. We will see that in many cases the diagrams

which constrain the split SUSY case are di↵erent than those which place constraints in the

well studied low scale SUSY case. Our results are summarized in Fig. 1 in which current

bounds and future sensitivity to the scalar masses is shown in a slice of parameter space

(see the next section for more details of assumptions made). Our conclusion is that the

0.1-1 PeV scale will be probed by a host of experiments in the near future. Constraints

from Kaon oscillations are already probing squark masses of a PeV. Bounds on neutron and

nuclear EDMs are likely to improve by several orders of magnitude and can also probe PeV

scale quarks. Searches for muon lepton flavor violation as well as precision measurements of

D0-D̄0 oscillations will also reach this interesting range.

In Fig. 1 we have assumed that the squark and slepton mass matrices are anarchic in

3

limits today

future limits

LFV is not alone!
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Conclusions
What’s the deal with flavor? we still don’t know!

CLFV is a sensitive probe of many NP scenarios. 
(EFT’s are a simple way to parametrize them).

For the LHC, new physics probed by LFV is often:

either too heavy (as in Split SUSY).

or too weakly couples (as for the Higgs).

The mu2e experiment will move the limit by four 
orders of magnitude! A decade in NP scale!

50



51


